N O A N R R R TR T R R w s

{a‘i'?';;; .
O ‘ ‘ ' .
LSO m um f ‘ Lt P E » t A
: "?f"‘z w .
§ '
o0 AVF Control Number: NBS87VDEC540_1 1

F

(o)) 2

. ‘
L | '
‘E) |
" Ada Compiler oy
M VALIDATION SUMMARY REPORT: =)
+ Certificate Number: 87120951.09014 g
& Digital Equipment Corp. 2]
N VAX Ada, Version 1.5 A
. The host environment is the VAX 8800 under VAX/VMS, Version)
A 4.7. The target environments are the VAX 8800 (under Y
g VAX/VMS, Version 4.7) and VAXstation II (under MicroVMS, ~
0 Version 4.7) .}
l. ¢
"
; .

-

Completion of On-Site Testing: D I ‘C .

8 ey g .
09 Dec 1987 % SLEL = p

PO11988,

Prepared By: ;

i Software Standards Validation Group - 4
A Institute for Computer Sciences and Technology .
! National Bureau of Standards o
: Building 225, Room A266 o

Gaithersburg, Maryland 20899

Prepared For:

Ada Joint Program Office L
o United States Department of Defense
:,: Washington, D.C, 20301-3081 8
' \
K,
K :
b \
. e \
AT eaT FaTa T
PESREUNOY SIARGERT A
; Blipnd o o, e .
: e Lt T tad i ot

L PRy

- e e . -

88 7 g,

. -y | .. LR K ” -t - ® R re] Ly .
.!‘l .‘l'!‘!’q" :“’»'l'- a‘\‘; L a.in.l.\ .\ .I “ ™ 5 ‘- .0.! X -I. ' ' ~ *"“- e \ -~ '\.

. "

TN AT R AN A A TN, 5
! & > \ n = . N A) -) 3 »

LIPS UL A T NN TOPTGA TN TN O TN YO0 SO RN PO RN O AR P AR PN AN O AR O T O S O P U R VWU YU W)

UNCLASSIFIED :::
= SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) -'
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORM ,.:‘
¥ | 1. REPORT NUMBER 2. GOVT ACCESSION NO. [3. RECIPIENT'S CATALOG NUMBER
\
- T
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED byt
Ada Compiler Validation Summary Report: 3 Dec 1987 to § Dec 1988 F3
Dlgltal Equipment Corp.,VAX ada, Version 1.5, o
VvAX 8800 (Host), and VAX 8800 & VAXstation 1II 6. PERFOSRMING ORG. REPORT NUMBER ,
(Targets). o
7. AUTHOR(s) ' 8. CONTRACT OR GRANT NUMBER(s) '..f
hY. ¢
. '
National Bureau of Standards, W
Gaithersburg, Maryland, U.S.A. »
9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK '
) AREA & WORK UNIT NUMBERS »‘;*
National Bureau of Standards, oY
Gaithersburg, Maryland, U.S.A. Pag
s,
11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE !
Ada nggt Program Office ¢ £ 9 December 1987 L
Washington, DC 20301-3081 " e "::
. p—y O
14, MONITORING AGENCY NAME & ADDRESS(If gifferent from Controlling Office) 15. SECURITY CLASS (of thisreport) %ﬁ
UNCLASSIFIED
National Bureau of Standards, 15a. QECLASSIFICATION/DOWNGRADING e
Gaithersburg, Maryland, U.S.A. (3
16. DISTRIBUTION STATEMENT (of this Report) -
n:,.‘
Approved for public release; distribution unlimited. b
N
'l
Nt i
17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. If different from Report) Wy
UNCLASSIFIED o
".
X
18. SUPPLEMENTARY NOTES ﬁ
X
..‘l
\
- — ——— ®
19. KEYWORDS (Continue on reverse side if necessary and identify by block number) X3
i 1y
Ada Programming language, Ada Compiler Validation Summary Report, Ada ‘cﬁ
Compiler Validation Capability, ACVC, Validation Testing, Ada S-'.
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD- Y
1815A, Ada Joint Program Office, AJPO
o
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) .:.":
VAX Ada, Version 1.5, Digital Equipment Corp., National Bureau of Standards, VAX 8800 (Host) under ‘,
VAX/VMS, Version 4.7 and VAX 8800 (Target) under VAX/VMS, Version 4.7, and VAXstation Il (Target:)
under MicroVMS, Version 4.7,ACVC 1.9. X
]
L] ‘.‘l
'
Wy
e 't
DD FUR" 1473 0ITION OF 1 NOV 65 IS NBSOLETF o
1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersid! 1
x 4

s - TS S N Tt R R R R LRV EPR L I I . PR,
D) -"‘-‘l.-gl‘-“.- AU O ‘|.~ t‘-‘c‘\ W, I.- ‘. s 7. . \'.ll J‘ 3""\"’ ’\\' { W ’ L B 'o .l‘!".la "’ﬁ?-t.'. > ' Q.C. \0\-‘!‘!‘

TP T W N I N WU WY WU WL WU WU W W W S Bat gt 08" 6)% 8a% a7 02t 4a% fav ba¢ 447 gat Job hat D2t 8% 0a° 8" IO 8a% Yt gV BU _gat §o9 o0 g,
!
Lt

e

Ada Compiler Validation Summary Report: X

Compiler Name: VAX Ada, Version 1.5 »

Certificate Number: 87120951.09014 oo

Host: VAX 8800 wunder VAX/VMS, Version 4.7 ‘h

Targets: VAX 8800 wunder VAX/VMS, Version 4.7
VaXstation II under MicroVMS, Version 4.7 o .

Testing Completed 09 Dec 1987 Using ACVC 1.9

This report has been reviewed and is approved.

Chief, Informatior. Systems
Engineering Division - ',
National Bureau of Standards
Gaithersburg, MD 20899 o

. @
/{) Pcce:.mn For Q;.‘
ENTIS g Y

Ada Validation Organization ey ffﬁ&'
Dr. John F. Kramer P e
Institute for Defense Analyses f S

-

Alexandria, VA 22311

[N

S

i
1

LIRS
i+

y ’ ‘ ;_-.”‘ “, TN Vv ,:.‘(-;;;ﬁ-‘ﬁ .
Ada Jo%t Program Office ; I o

Virginia L. Castor P S nla)
Director ! i L 1

Department of Defense /?¢7 | : i
Washington DC 20301 A f \

¢
G OYOEIOUSO Ped Y Y3)) Ry WY (R W p L T LY N L -y
RN hv"."&,g‘_”‘.!",!!'.o?M'!,t, he! |! X\ ‘Q..“Q‘ (Q- ‘;f),.:o,g! LR OO0 !3,1!0". a, " OOC O (M ‘;. O ' b X, At Y " X meln Y : 3

EXECUTIVE SUMMARY DVt

This Validation Summary Report (VSR) summarizes the results and N
conclusions of validation testing performed on the VAX Ada, Version 1.5, ®
using Version 1.9 of the Ada Compiler Validation Capability (ACVC). VAX

Ada 1s hosted on a VAX 8800 operating under VAX/VMS, Version 4.7. A
Programs processed by this compiler may be executed on: W
)
VAX 8800 under VAX/VMS, Version 4.7 it
VAXstation II under MicroVMS, Version 4.7 [
On-site testing was performed 07 Dec 1987 through 09 Dec 1987 at Nashua, i;
NH, under the direction of the Software Standards Validation Group, fﬁ
Institute for Computer Sciences and Technology, National Bureau of ~
Standards (AVF), according to Ada Validation Organization (AVO) policies o)
aud procedures. At the time of testing, wversion 1.9 of the ACVC o
comprised 3122 tests of which 25 had been withdrawn. Of the remaining =
tests, 89 were determined to be inapplicable to this implementation. "Q
Results for processed Class A, C, D, and E tests were examined for ?Q
correct execution. Compilation listings for Class B tests were analyzed h
for correct diagnosis of syntax and semantic errors. Compilation and 'ﬂt
link results of Class L tests were analyzed for correct detection of [
errors. The remaining 3008 tests were passed. The results of %
validation are summarized in the following table: q ¢
ey
RESULT CHAPTER TOTAL g,
—2_3_4_5_6_7_8_9 10 11 12 13 14 ___ iy,
®
Passed 185 553 657 245 166 98 141 326 137 36 234 3 227 3008 'g&
#“e
Failed ©o 0 0 0 0 0 0 0 0 0 0 0 0 0 oy
(A
Wy
Inapplicable 19 20 18 3 0 0 2 1 0 0 O O 26 89 oy
o
Withdrawn 213 2 0 O 1 2 o O O 2 1 2 25 2@
N
TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122 %ﬂ
t
'
hi
The AVF concludes that these results demonstrate acceptable conformity)
to ANSI/MIL-STD-1815A Ada. Bt
'
TN

>

2252

y"j{l".v .
-y

,,
® e
oo e e g

‘:.”:‘."i‘;'Vv'¢'b‘a.)...b"‘i\‘,no‘-.“‘.ﬁ‘-'l'n'i‘;’l‘.“'»"‘.\ Y, L .) ,- R ..'I‘ !' .’a bl !'1 T. !'\ & &0 .o Qe X

o

N R X T AR SR RN L R R IO O A N M S e o o T,

CHAPTER 1

e el el
WS wN

CHAPTER 2

NN
N

CHAPTER

w

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

OO OO QO O OO WY N, P i ¢
S T N e Sttt R L TR TR M N XD TR AT A R S B R I T o)

WWWwWwwwwwww
NNNNOWVM P WwWN

W N =

TABLE OF CONTENTS
INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES . . coe
DEFINITION OF TERMS

ACVC TEST CLASSES

CONFIGURATION INFORMATION

CONFIGURATION TESTED . . .
IMPLEMENTATION CHARACTERISTICS .

TEST INFORMATION

TEST RESULTS .

SUMMARY OF TEST RESULTS BY CLASS
SUMMARY OF TEST RESULTS BY CHAPTER .
WITHDRAWN TESTS c e
INAPPLICABLE TESTS .

TEST, PROCESSING, AND EVALUATION MODIFICATIONS .

ADDITIONAL TESTING INFORMATION .
Prevalidation . e
Test Method
Test Site

CONFORMANCE STATEMENT
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

‘a8

B IR YRR

WL W Wi W Ww
[} [} L] L]
I Y, P S P S I QU

- -

" _R_8 . = - T
x55
SO A Ly L

. "fl;'(

® ST

D
R

[)

i

a3 ULl RS a3 el Kol cal cof Sl el ol gl el Fal Wad il Vad 29 9a) Siip Vap B Wal B Rl v R Nl Sal Vel Vo) ah walh $a) Vol ol

CHAPTER 1

INTRODUCTION

N

This ?‘Validation*SumnaryJReport “e¥SRY describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

*Even though 211 validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between

implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers

result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report."

This information in this report is derived from the test results

produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results. The purpose of validating is to

ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it

identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are

designed to perform checks at compile time, at link time, and during
execution.

1-1

OO M IO ST Y ORI
O g LA NS P S TN D DR DN b O DO D i DX DO W

Sal tall Gl wa Sof d . - .'n.

|"
“n‘n W ' lh::

NN L RGN NN PN W NV T WL W0 WM TN W O, T TSSO I IO TN PO POR PO R PO WOk N WM W W W W W Ve s At ata'alia‘afoiat Vol ¥ag Yoy ‘z!

S

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPCRT V)
®
This VSR document’s the results of the validation testing performed on an :9'
Ada compiler. Testing was carried out for the following purposes: .l
i
v M
To attempt to identify any language constructs supported by .:::j
the compiler that do not conform to the Ada Standard ah!:

@
To attempt to identify any unsupported language constructs b ;:
required by the Ada Standard ! -
L0
To determine that the implementation-dependent behavior is :‘-;;'J

allowed by the Ada Standard ALY,

L]
]
On-site testing was conducted from 07 Dec 1987 through 09 Dec 1987 at ::;
Nashua, NH. s
o
v

[

1.2 USE OF THIS VALIDATION SUMMARY REPORT v
Consistent with the national laws of the originating country, the AVO “&
may make full and free public disclosure of this report. In the United :
States, this is provided in accordance with the "Freedom of Information gt
Act"™ (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in).
this report. e ’:
y
The organizations represented on the signature page of this report do g‘lf
not represent or warrant that all statements set forth in this report hat
are accurate and complete, or that the subject compiler has no ® .
nonconformities to the Ada Standard other than those presented. Copies ":
of this report are available to the public from:)g"r
o
] (]

Ada Information Clearinghouse '::
Ada Joint Program Office SR
QUSDRE : ,

The Pentagon, Rm 3D-139 (Fern Street) . ::
Washington DC 20301-3081 N

)

[e
or from: .§~.
)

Software Standards Validation Group]

Institute for Computer Sciences and Technology '.'_V'

National Bureau of Standards :?

Building 225, Room A266 5

Gaithersburg, Maryland 20899 3.,-

@
4
1-2 -‘
':. »
\ (3
e

0 e ; : N W\ i N) i P " W o o T W Y0 aY ™ L]
450,099,740, e LR O T S Rt e OO0 ?...,, W ,|,.. ,l.l.'; fo ‘-'*' P ..o .o N A N N

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manﬁal for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide.
SofTech, Inc., December 1986.

TS

LA A
[

")

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conforrity of an Ada compiler to
the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this
report, the AVF is responsible for conducting compiler
validations according to established procedures.

AVO The Ada Validation Organization. In the context of

this, report, the AVO is responsible for establishing
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,

1-3

SRV, T Sh AL |.", " “,v ' ") . “ Y %» % ‘,k \ '~.. "\ 'y ‘7-,"\-" g \"\ LY ‘."-.‘.\","- A e '\'ﬂ," L Sl By \'n,.",f‘v.\‘x‘

v e S e we T

N B

.-

- e o

e Pt

’r ‘...4 “. 4

«
¥4

)

RIS TS WP R TS R o TU PO T IO R TSR s Salxt Bt ¥ eV 08° 2% §a® fa* W WU M N W W » N

including cross-compilers, translators, and
interpreters.
Failed test An ACVC test for which the compiler generates a result

that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

Language The Language Maintenance Panel (IMP) is a committee

Maintenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler’s conformity

regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check

test conformity to the Ada Standard. A test may be incorrect
because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
of the langvage.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured intc sia tast
classes: A, B, ¢, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see
if the test objective had been met. For example, a Class A test checks
that reserved words of another language (other than those already
reserved in the Ada language) are not treated as reserved words by an

1-4

PN LY

(B il o el O A LA o T, S T T T A TR AT AT S AT A AR AT N AL A
O . oty LA Xy T . WP AT Xk * An..n~*\'~ A

9.9 8

o

¥ o

“w S B v Sy

PETPIE,

-

R A
P

-
Kyl Ko

-
"

LR PO WM A NG W W WU S, U VW U O P PO O YO o R T Ty

Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests aré not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler,

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a

conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as 1inapplicable. If a Class D test compiles successfully, it is

self-checking and produces a PASSED or FAILED message during execution.

Each Class E test 1is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute, Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FTLE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of
these units is checked by a set of executable tests. These tests
produce messages that are examined to verify that the units are

1-5

: P T XY T T v . P A ~ - e T A
B R e e N OVAT e e I D 0 T A e D M o 2 e nY

Cr L2 L2

_ ff*rfﬁﬁa

PR o S
s o W 2!

F P Sy
® LGN e)

..l..
o

&
)

X7 \;.,.

n @
72500 &

;-

ho_s

s AN g g
LI @ LLILISO oy,

R)
xS

8,

RN #

PR

. .

PR

R R N

operating correctly. If these units are not operating correctly, then
the validation is r»nt attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure tuat the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent wvalidation. Any test that was determined to contain an
illegal language construct or an erroneous language construct |is
withdravn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of validation are given in
Appendix D. :

1-6

Lt

J"'-"‘T"{f"‘-’y':,

S

[APVAATY I
>

5

LA 95 B N A

) A v

A Ll

R S
"=

‘{.’{"(('f e

-
2

I

SR
POCER .

A

3
»

w » ¥ ¥ v
T

f

R O R TR R AR A " A e et s *om " * e s~ ~m < e o ean e s
T R, e N L L R R L A Gty A G R TN A RN I X
b L s S0 S SR N Nt] W S A it Koy)

PITLRTTNT UN U U W% s X o Y N R R R N Rk TR R Y L N R R R R Ry w Wy w gy Ry

’ CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under
the following configuration:
Compiler: VAX Ada, Version 1.5
ACVC Version: 1.9
Certificate Number: 8§7120951.09014
Host Computer:
Machine: VAX 8800
Operating System: VAX/VMS, Version 4.7

Memory Size: 68Mbytes

Target Computers:

Machine: Operating System: Memory Size:
VAX 8800 VAX/VMS, Version 4.7 68Mbytes
VAistation II MicroVMS, Version 4.7 9Mbytes
Communications Network: DECnet

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. <Class D and E tests specifically check for

such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

2-1

4 (IUK) LT R % B NS A U PR T, Tl - LR U R I R W N IV R S W B LI
‘.l“.o‘l.o L0 'J“J“q' ‘-‘.‘.u B GG 0, VY “ in q.-t ! Q-.O A H l’n!c W, +o ."‘.'- "'\''4' (S

I S o i

'Iﬁ'!.v"‘

AR L AL wy

~ T
. Y
=y N

o Yo,

S I® Crr LA T

% %
Pl ar s

Ay

> S
) - . -

gL AR

LS Y

] -
lﬁl‘ »

TRRLT KR AN R

WU ICR AU R A RO ORI ATV A AR

- Capacities.

The compiler <correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as subunits
nested to 17 levels. It correctly processes a compilation
containing 723 variables in the same declarative rart. (See
test D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See
tests D4A002A, D4AOO2B, D4AOO4A, and D4ADO4B.)

- Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, LONG_FLOAT, and SHORT_SHORT_INTEGER in the
package STANDARD. (See tests B86001BC and B86001D.)

- Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERIC_ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E24101A.)

- Expression evaluation.

Apparently all default. initialization expressions or record
components are evaluated before any value is checked to belong
to a component’s subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See

test C35903A.)

Apparently NUMERIC_ERROR 1is raised when an integer literal

2-2

WP

3 .n‘.l.

NS Ly

o'y,

N

LA AR N4

i

-
L)

A s

575

W L,

Yy
P

o

P AP
7, T

-]

S FRrE

r
“

O
bR

Y

e

-
'd
r

T % B NS
1!-‘ [AES

Pk A i
€ ' p

*,

e

- -

He

SR AP AU TGS R ZUT U TUR TR PO TOR TUR PO R T T Lo LK o o Y L L A O U U A R s e o ‘a0d 4 ¢

operand in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC _ERROR is raised when a literal operand in a
fixed polnt comparison or membership test is outside the range
of the base type. (See test CA45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

- Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z2.)

The method used for rounding to integer in static universal real
expressions 1is apparently round away from =zero. (See test
C4A014A.)

- Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a ‘LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises NUMERIC_ERROR. (See test
C360034A.)

NUMERIC_ERROR is raised when ‘LENGTH is applied to an array type
with INTEGER’'LAST + 2 components. NUMERIC ERROR is raised when
an array type with INTEGER'LAST + 2 components 1is declared.
(See test C36202A.)

NUMERIC _ERROR is raised when ‘LENGTH is applied to an array type
with SYSTEM.MAX INT + 2 components. NUMERIC ERROR 1is raised
when an array type with SYSTEM.MAX INT + 2 components is
declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC_ERROR when the array type
is declared. (See test C52104Y.)

A null array with one dimension of 1length greater than
INTECER'LAST may raise NUMERIC_ERROR or CONSTRAINT ERROR either

2-3

L@ SRS T
.. R T LA R R O

. ~
"W
&3

IR TRYN Y L PR LR 2tk L X 3 ¥ A U R R AR S T U S N X R N T T N T T O R T R O N

g

%
b
0,
®
LIR* N
-\ \
o
when declared or assigned. Alternatively, an implementation may "::
accept the declaration. However, lengths must match in array W
slice assignments. This implementation raises NUMERIC_ERROR LN,
when the array type is declared. (See test E52103Y.) By
L] “;
N
In assigning one-dimensional array types, the expression appears .'l:|f
to be evaluated in its entirety before CONSTRAINT ERROR is .:h::
raised when checking whether the expression’s subtype is o:::u'
compatible with the target's subtype. In assigning O
two-dimensional array types, the expression does not appear to .
be evaluated in its entirety before CONSTRAINT ERROR is raised I_,J‘
when checking whether the expression’s subtype is compatible X
with the target’s subtype. (See test C52013A.) "
BN
e
- Discriminated types. d
RNA
o 0O
During compilation, an implementation is allowed to either o
accept or reject an incomplete type with discriminants that is o.!..t
used in an access type definition with a compatible discriminant .::O..ﬂ
constraint. This implementation accepts such subtype bt
indications. (See test E38104A.) 2
x
)
In assigning record types with disciminants, the expression “':EE
appears to be evaluated in its entirety before CONSTRAINT ERROR o.‘:u.‘
is raised when checking whether the expression’'s subtype is ::.;::
compatible with the target’'s subtype. (See test C52013A.) Ly
L]
!i""
kit
- Aggregates. .v.:.v;
0.7t
W
In the evaluation of a multi-dimensional aggregate, all choices .o:i.o
. (X
appear to be evaluated before checking against the index type. *
(See tests C43207A and C43207B.) o
In the evaluation of an aggregate containing subaggregates, all :’yz
choices are evaluated before being checked for identical bounds. l:.‘:
(See test E43212B.) ﬂ){:-.-.
All choices are evaluated before CONSTRAINT ERROR is raised if a ,.,
bound in a nonnull range of a nonnull aggregate does not belong .:::.j
to an index subtype. (See test E43211B.) ‘:.:;
Dt
|:1;\
. §
- Representation clauses. °
T
The Ada Standard does not require an implementation to support 1‘.:"0.
representation clauses. If a representation clause is not Y ‘c‘.
supported, then the implementation must reject it. (‘2

Enumeration representation «clauses containing noncontiguous

values for enumeration types other than character and boolean ‘,‘
o
2-4 §;::

exes
R

<
. -

o

[y . o TR TR T MY g M X X . e . N . - -
‘l<‘1.“‘e..'|‘.'\.,,'§.- AN .’Q‘.l. Jl.l.a.llth -'l.l /! LK ll .--' V& '\ S '!-" at !" \'\'r Mot a ".‘l ':‘!h.’\.

RS AL TN A Fon i a0 il RO AR RAN

,-'ar.’h‘i)neh’ln‘.:a"a"‘l‘h"“is'ﬂ‘i'w'l“‘l"'i"‘“‘ QA ath gty ate atg at e avE 2t a4 n %0 et nte e 8 2t a8 2% a%2 208 2" a?A 2’ 8YS 2% 8% a'h.a"

types are supported. (See tests (C355021..J, C35502M..N, and
A39005F.)

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
€355071..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
not supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A,
LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

- Input/output.

The package SEQUENTIAL_IO can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, EE2201D, and EE2201E.)

By default, the package DIRECT_IO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests EE2401D and EE2401G.)

There are strings which are illegal external file names for
SEQUENTIAL_IO and DIRECT_I0. (See tests CE2102C and CE2102H.)

Mode IN_FILE 1is supported for SEQUENTIAL_IO. (See test
CE2102D.)

2-5

v

R R T O D IR R W R R T T LA o ms LUCAX AN TOR POT POC RO TR 20K YN 88,0 2.4

Mode OUT_FILE 1is supported for SEQUENTIAL_IO. (See test
CE2102E.)

Modes OUT_FILE and INOUT_FILE are supported for DIRECT_IO. (See
tests CEZ102F and CE2102J.)

Mode IN_FILE is supported for DIRECT_I0. (See test CE2102.)

RESET and DELETE are supported for SEQUENTIAL_IO and DIRECT_IO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of ‘files are supported for
(SEQUENTIAL I0 and DIRECT_IO0. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT_FILE mode, and can be created IN_FILE mode. (See
test EE3102C.)

By default, only one internal file can be associated with each
external file for text I/0 for both reading and writing. (See
tests CE2110B, CE2111D, CE31l1l1A..E (5 tests), CE3114B, and
CE3115A.)

More than one internal file can be associated with each external
file for sequential I/0 for reading only. (See test CE2107A.)

More than one internal file can be associated with each external
file for direct I/0 for reading only. (See test CE2107F.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and CE2108C.)

- Generics.

Generic subprogram declarations and bodies can compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

2-6

B WA I U RO IR VST TR USRI R AR R N R L N R X T U U U U R R O T N T T o o) a%a Al At K

CHAPTER 3 o)

TEST INFORMATION il
¢

3.1 TEST RESULTS <
At the time of testing, version 1.9 of the ACVC comprised 3122 tests of h
which 25 had been withdrawn. Of the remaining tests, 89 were determined o
to be inapplicable to this implementation. [

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard. M

3.2 SUMMARY OF TEST RESULTS BY CLASS ':l;

RESULT TEST CLASS TOTAL Tol
A B ¢ D E L

Passed 108 1048 1773 17 16 46 3008)
Failed 0 0 0 0 0 0 0 0
Inapplicable 2 3 82 0 2 0 89
Withdrawn 3 2 19 0 1 0 25 !

TOTAL 113 1053 1874 17 19 46 3122)

o x " o
i A

v v

o

3-1

e
ooy o

‘.

p0

A YALCOGHN OO0 $ XK . " o C o
ASAUACORN A, ul‘n.l‘.- !’s.l‘a.."»?l“‘l‘.‘i‘u’,\’!‘l‘o l“.l “i'g,i’x 4.l.'.I l'l'l!\'h.’u.I‘ml‘..l‘.'.l‘.,l‘q, SUALN \'.,. ‘Q. 'g!"..l‘p.!‘a ", ‘.‘l\ . '. “. .. "j', "' u‘. A, R ', |I!‘.l..‘ .':‘

3.3 SUMMARY OF TEST RESULTS BY CHAPTER »

[

:
: i
RESULT CHAPTER TOTAL o)
2 _3_4_5_6_7_8_9 10 _11 12 13 14 4t
Passed 185 553 657 245 166 98 141 326 137 36 234 3 227 3008 N
_ (o
Failed 0o o 0 0 0 0 O O O O o0 0 0 ©0 :-"
8%,
Inapplicable 19 20 18 3 0 0 2 1 0 O O O 26 89 ¥4

»
Withdrawn 2 13 2 o0 o0 1 2 O O O 2 1 2 25 3
e
TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122 ﬁé
o

[4
3.4 WITHDRAWN TESTS W
oo W,
ty!
The following 25 tests were withdrawn from ACVC Version 1.9 at the time :df

of this validation:

B28003A E28005C C34004A C35502p A35902C €35904A
C35A03E C35A03R C37213H C37213J €37215C C37215E

C€37215G C37215H €38102¢C C41402A C45614C A74106C .ﬁ
C85018B C87B04B CC1311B BC3105A AD1AO1A CE2401H f:
CE3208A W
o
See Appendix D for the reason that each of these tests was withdrawn. 3
N
e
.
3.5 INAPPLICABLE TESTS .::E
4
Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support. I
Others may depend on the result of another test that is either ;ﬁ
inapplicable or withdrawn. The applicability of a test to an f:
implementation is considered each time a validation is attempted. A “@
test that is inapplicable for one validation attempt is not necessarily Y
inapplicable for a subsequent attempt. For this validation attempt, 89 »
test were inapplicable for the reasons indicated: P
n;
C24113H..Y (18 tests) have source lines that exceed the VAX Ada 'ﬁ
implementation limit of 120 characters. oG
’
o
3-2 |‘::
y

B} 'y 0] 3 LY . n » . . 3 X e A ”
R A MARNAN 5.ﬂ",‘»".s.t\’0!0'5,‘Q"..’.’Q'.‘.‘!.'.!.‘."...’,.‘_"Q!..L‘,Q_..l."_“._ OO SN '_..’ BN e e f"_ ‘Aol e ,(’ "
3 \ wWealy.

Ay

R 3 VRN AN AU ROV R OO R TR U Y aD gl tah Upt vah 0ah Gah o b R GGG Val Gk AD oal b Yy g vas

A28004A Line 23 contains a pragma INTERFACE for function MEMORY SIZE
whose body is declared at line 18; this implementation rejects the
subprogram body on the basis of the Ada Standard 13.9 (3). The test
expects the pragma to be ignored due to the language name "ZZ2ZZZ". The
AVO temporarily *ruled this test N.A. while the issue is further
considered.

C355081..J (2 tests) and C35508M..N (2 tests) wuse enumeration
representation clauses for boolean types containing representational
values other than (FALSE => 0, TRUE => 1). These clauses are not
supported by this compiler. _

C35702A (and B86001CP which is not included in the above 89 count) use
SHORT_FLOAT which is not supported by this implementation.

A39005G specifies a range for a component in a record representation
clause that is not compatible with the default representation chosen by
the compiler for the type of the component.

The following (l4) tests use LONG_INTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C C45503C C45504C C45504F
C45611C C45613C C45631C C45632C B520C04D B5ZB0O9C
C55B07A B86001CS

The following (22) tests use particular fixed point base types which are
not supported by this compiler.

C35902D C35A03B..C C35A030..P C35A04B..C C35A040..P
C35A06B C35A07B..C C35A070..P C45531I1..J C45513M..P
C455327..J C45532M..P

CB86001F redefines package SYSTEM, but TEXT_I0 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package TEXT_IO.

C96005B requires the range of type DURATION to be different from those
of its base type; in this implementation they are the same.

CE2102E 1is 1inapplicable because this implementation supports mode
OUT_FILE for SEQUENTIAL_IO. '

CE2102F 1is 1inapplicable because this implementation supports mode
INOUT_FILE for DIRECT_IO.

CE2102G is inapplicable because this implementation supports RESET for
SEQUENTIAL_IO.

CE2102J 1is 1inapplicable because this implementation supports mode
OUT_FILE for DIRECT_IO.

3-3

-

EEM LI FWADRDA) > L T -) - ~p g , PR B fom e s
RO RN 4 ‘»’:‘l’- ‘.A.‘.A.O'».(.;.i'u.".l...:.l.i‘l'o."t.1'0".1 l‘a;l’...’a. », ’.,‘C‘._l‘q,ﬁ‘.!c‘..".‘ ..j.hl.q.ﬁq,l .‘l‘g,l. '., ‘, " 0‘, O l‘ oy _l'. ¢ l.l' "y,

I W APRIAR TSR O AR G A AN R N RN MU A RV R U NYLUTUNUNUY UWIANY LT A R AN MAT UG G RGO R oo « va ¥

CE2102K is inapplicable because this implementation supports RESET for
DIRECT_IO.

CE2105A, CE210S5B, CE2111H, and CE3109A are inapplicable because this
o implementation does not allow the creation of a file of mode IN_FILE.

CE2107B..E (4 tests), CE2107G..I (3 tests), CE2110B, CEZ111D, CE3111B..E
(4 tests), CE3114B, and CE3115A are 1inapplicable because this
implementation does not allow more than one internal file to be
associated with an external file for mode INOUT_FILE or OUT_FILE in
combination with mode IN_FILE or OUT _FILE or INOUT FILE when default
aﬁ‘ options are used.

W EE2401D and EE2401G wuse instantiations of package DIRECT IO with
unconstrained array types and record types having discriminants without

o defaults. These instantiations compiled with no errors, but during
?5 execution USE_ERROR was raised.

ReH

b

j?: 3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

T It is expected that some tests will require modifications of code,
0 processing, or evaluation in order to compensate for legitimate
'ﬁ} implementation behavior. Modifications are made with the approval of
fgd the AVO, and are made in cases where legitimate implementation behavior
3%‘ prevents the successful completion of an (otherwise) applicable test.

Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into

xﬁ sub-tests so that all errors are detected; and confirming that messages
:%: produced by an executable test demonstrate conforming behavior that
Q@ wasn't anticipated by the test (such as raising one exception instead of
%ﬁ another).
Y No modifications were required for any of the tests.
o
;s: C34007A, C34007D, C34007G, C34007M, C34007P, and C34007S require that
Qﬁ. the attribute STORAGE_SIZE return a value greater than 1 when applied to
ol an access subtype for which no STORAGE_SIZE length clause was provided.
N This requirement is challenged and will be reviewed by the ARG. The AVF
aw verified that the failure of these tests was solely attributable to the
" STORAGE_SIZE check, and the AVO ruled that such results should be
$$ counted as "PASSED".
,.g.‘
L
ﬁb C4A012B checks that 0.0 raised to a negative power raises CONSTRAINT
g ERROR; however, NUMERIC_ERROR may also be raised, and that is what this
xR implementation does. The AVF confirmed this by an analysis of the
SQ results, and the AVO ruled that such behavior counts as "PASSED".
o
X 3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

4
L)
. 3-4
L
#

¥ LIPC P R T

' " 3 N 'y bg' ! y) s N i ‘ %, K “m X "0 - - = L3 -
SR ety I\oal‘gh‘:\‘g.\'i‘l‘tJ.u.l'l.,..l'.‘.'.‘.q, DO .'. WP ‘oal‘?l, !!, ' .“.h‘,’o‘,’.h‘!’s RN WAL A T A LT Y N."' m

R e S T B I G N Y A S TR T LA S AT LA %0

PR KW LN RN TN TTGE T II T ST O Y NE RIS NS NN KA AR IR AR, Wl Mol a0 #d vat Al Nt o al Rat AV afiav et ety

Prior to validation, a set of test results for ACVC Version 1.9 produced
by VAX Ada was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected
behav’or on all inhapplicable tests.

3.7.2 Test Method

Testing of VAX Ada wusing ACVC Version 1.9 was conducted on-site by a
validation team-from the AVF. The configuration consisted of a VAX 8800
operating under VAX/VMS, Version 4.7 and the two target computers: VAX
8800 host operating under VAX/VMS, Version 4.7 and a VAXstation II under
MicroVMS, Version 4.7. The host and target computers were linked via
DECnet.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized before being
written to the magnetic tape. Tests requiring modifications during the
prevalidation testing were included in their modified form on the
magnetic tape. ‘lhe contents of the magnetic tape were loaded directly
onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the VAX 8800, and all executable tests were run
on the VAX 8800 and the VAXstation. Results were printed from the host
computer, with results being transferred to the host computer wvia
DECnet.

The compiler was tested using command scripts provided by Digital
Equipment Corporation and reviewed by the validation team. The compiler
was tested using all default (option/switch) settings except for the
following:

Option/Switch Effect
/NOCOPY_SOURCE Controls whether the source being compiled is

copied into the compilation 1library for a
successful compilation.

/NODEBUG Controls the inclusion of debugging symbol
table information in the compiled object
module.

/ERROR_LIMIT=1000 Controls the number of error level diagnostics
that are allowed within a single compilation
unit before the compilation is aborted.

/LIST Controls whether a listing file is produced.

/LIST without a filename wuses a default
filename of the form sourcename.LIS, where

3-5

) WY,

G N N Y PR AR (T

.~ %y N
e] @ Kyl

o

X T A,
PN

] @

SR o

AQ AL

fpreariets
e O

yoo

£

£

R R A R R T N R R A R N I R R A N I R R R A T T T TR X T

sourcename is the name of the source file
being compiled.

/NOSHOW Controls whether a portability summary is
r included in the listing.

Tests were compiled, 1linked, and executed (as appropriate) using a
single host computer and two target computers. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at
the AVF.

3.7.3 Test Site

The validation team arrived at Nashua, NH on 07 Dec 1987, and departed
after testing was completed on 09 Dec 1987.

3-6

~ A

. Y ‘ ' A X R . e - e o e oy ,
DN T NI B TR AU AN R o 2 " P e SN T e

B L0

P TRt A
., y

"

Sy odav o dat

A A
N Mt

LR IS U A AN AR AR AN LR A AR AR N P O R R P XNy TR AN R AN W R N W W WY U IR VW LY WY LW e AR e Sty ‘ol gl valoltn a0

v APPENDIX A 4

CONFORMANCE STATEMENT

The following Declaration of Conformance is provided by DEC for VAX Ada.
Because the VAXELN targets produce different results than those of the ‘
VMS targets for three ACVC tests (which require temporary files to have ',
names), the VAXELN & VMS operating environments were tested separately,

and the testing is thus documented in separate VSRs. However, the AVO o
made no request for DEC to submit separate Declarations of Conformance. i

g;;;#-—l.

L0 g
b " S .

Ay Ry ¥
Wi

.
e 2

ey
L

¥) 4

:.{N s
g X P e,

G| @ LA

R SONON
AL,

QOGO Y, Iy ¥, N W N T T N N Y Y o Y L W N W LN " N e N rn LG TR T O T YN
B I T N e ez =t ; N M N N A N NN NI A T R RYENTY TN

S b Cail b L Lo

R R R R I T X Y VLYY Y Y W it ahs |

Declaration of Ccnformance

Compiler Implementer: Digital Eguipment Corporation
Ada Validation Facility: National Bureau of Standards
Ada Compiler Validation Capability Version: 1.9
Base Configuration:

Compiler: VAX Ada Version 1.5

Host Configuration:

VAX B8800 (under VAX/VMS, Version 4.7)

Target Configuration:

VXX 8800 (under VAX/VMS, Version 4.7)

VAXstation II (under MicroVMS, Version 4.7)

MicroVAX II (under VAXELN Toolkitc, Version 3.0
in combination with VAXELN Ada, Version 1.2)

Derived Compiler Registration:
Compiler: VAX Ada Version 1.5
Host Configuration:

All members of the VAX family:
MicroVaX I
VaXstation I
MicrovVaX II
ViXstation II
VAXstation 2000
(all under MicroVMS, Versiocon 4.7)

MicroVaX 23500
MicroVaX 3600
‘~Xserver 3500
Vi¥server 3¢90
VaXserver 3602
ViXstation 3200
VaXscatcion 2500
(all under VAX/VMS, Version 4.7A)

VaX-11/730
VEX-11/750
VaX-11/780
VAX-11/782
VAX-11/785

o R N R AT T e oy

g™

K R O R RO R R TN R 5 R TR RO FOT R WX R Ha%atat Aav e 9o W o T Y - ry ‘o

VAX 8200
VAX 8250
VAX 8300
VAX 8330
VAX 8500
VAX 8530
"VAX 8550
VAX 8600
VAX 8650
VAX 8700
VAX 8800 (base configuration)
(all under VAX/VMS, Version 4.7)

Target Configuration:
Same as Host; and the following VAXELN configurations

Microvax I

MicrovaX II

rtVAX 1000

KA620 (rtvaX 1000 processor board)

MicroVAX 3500

MicroVaX 3600

VAX~-11/730

VAX~11/750

VAX 8500

VAX 8530

VAX 8550

VAX 8700

VAX 8800
(211 under VAXELN Toolkit, Version 3.0 in
combination with VAXELN Ada, Version 1.2)

21l of the processors listed above, including MicroVaX, VaXstation,

and VAXserver systems, are membexrs of the V2X family. The VX

family includes multiple hardware/software iImplementaticns of <the
same instruction set architecture. All processors of the VAX family
together with the VMS or MicroVMS operating system provide an
identical user mode instruction set execution environment and need
not be distinguished for purposes of validation Similarly, all ViX
family ©processors supported as VRXILN Toolkizt targets provide an
identical user mcde instruction set execution envircnment

The identical VAX Ada compiler 1is used on &l1 hosts, and th
compiler has no knowledge of the particular VAX model on which it i
being executed. Further, the compiler generates icdentical code 2o
all targets. Thus, the code generated on any VaX hcst can be
executed without modification on any of the VEX targets listed
above.

...,r
e X3

'y

) KT
»

l’/

g

~“‘5.‘l i

e

w R .
VAN IS DY 5

N W
i '»','.‘!‘o':’u'. '!‘l':’b‘:‘l‘a LAY

2l1 of the
registration

That is, all
compiled and

() bl ~

con ~‘gu*atlons listed under the
section above are eguivalent to the base conficura

applicable ACVC Version 1.9 tests

IR W) W W Y R W

L}

cerived com

'y
D oW
l< .

t O b+

3
e
5
pa
C

could be corre

executed on any of the configurations listed.

william J\d$ef~ er
Vice Presildent, System Software Group

L' %)

14 September 1987

LA . e 05 A% ' TV . . A el LA LS R Ny Y "y ™ » L P N Tt
TR At T A b L e D DR LA OO NN L e S

1@ 75

93

o n &g

"o b
SR
o)

L R

»
1

¥ .3 I w &
o

L T]
RRR
R

PSS S Ay e WY B]
J.l,l,{lk Ii. » .":."—. W).‘:.A‘:

‘n‘

TR ANRMNRY TRTR U UN N N AT A AR U UG ATLV ANV . INRJLRN) HARE ARENRNE £ (] . DA T 0 u W AT

* APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to certain
allowed restrictions on representation clauses. The implementation-
dependent characteristics of the VAX Ada, Version 1.5, are described in
the following sections which discuss topics in Appendix F of the Ada

Language Reference Manual (ANSI/MIL-STD-1815A).. Implementation-
specific portions of the package STANDARD are also included in this
appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT_ INTEGER is range -32768 .. 32767 ;

type FLOAT is digits 6 range;
type LONG_FLOAT is digits 15;
type LONG_LONG_FLOAT is 33 digits;

type DURATION is delta 1.0E-4 range -131072.0 .. 131071.9999;

end STANDARD;

B-1

i) o>

!

1 W W o W W W A Wi S e W W T AW MY et M e LI
'!"il."l-‘!l’, Weln itV W .l@. - .h“.‘ RO -l‘. “’\' LN ,. .‘ "'-" N "‘ "\ N ."\ v " -‘\

L)
\. " .‘-"‘-h‘--.\--\._ A _.-r'\{;\ 1
Sl sl - Salalald

2

ok,

LI,
Ao

10

A v r 6 v " A
AR

A,
o

N
P4

2

v

’.’\l .
o 3

P P TP U It R R A A U W U U U N U U N Y LS PR Y R T T o o N S O T T T Y DY T T Y I T Y O SO O Q
h'g 3 v 4 v 9,4

.
)
9
o,
@
oy8 i
.
']
]
X
.]
)
!
b
"':!
APPENDIX B o
)
APPENDIX F CF TEE ADA STANDARD ®
o
0..
3
!
. . . 'o'::
The only allowed implementation dependencies correspcnd to L0
implementation-dependcent pragmas, to certain machine-dependent PY
conventions as mentioned in chapvter 13 of ANSI/MIL-3TD-181SA-~1983,
and to certain allowed restrictions on representation classes. Th 5%
implementation-dependent characteristics are described in the ?:
following sections which discuss topics one through eight as stated ;ét
in Arpendix F of the Ada Languace Reference manual *ﬁ
(ANSI/MIL-STD-~1815a). Two other sections, package STANDARD and £il :J
naming conventions, are also included in this appendix. e
Porzions of this section refer to the following attachments: g
: ~
. . . Lg%t
1. Attachment 1 - Implementation-Depencent Pracgmas ~
-
2. Attachment 2 - VAX Ada Appendix F :r
()
i
0.
]
. o
st
(1) Implementaticn-Dependent Pracgmas \
o
See Attachment 1 vy
w0
(2) Implementaticon~-Dependent Rtiributes '&W
2
Name Tvoe ®
P'AST_ENTRY The value of this attribucte is cf tyce '@‘
SYSTEM.AST HANDLZIR. "
z (]
Pr2IT The wvalue ©f this attribuzte is c¢I tyoe x|
universal integer Py
\
e - - - . - < [e,"
P'MACHINZ SIZE The value of this attribute is ¢ <type A
universal integer o)
)
A
B-1)
]
&
R’.
L ¢

; . - . A A A A R <A < mran . i et
B R A A A S A o L Ay W 7 (01

ST

= s -z 7 =3 =—iNITi:z-
< < - < - —— A SN BT

- \J
Ml

P/NULL_PARAMETER The value of this antribute is of ctype "
: &
P’/TYPE_CLASS The value of this attribute is of type ‘ﬁ
SYSTEM.TYPE CLASS. 2

®
LA :‘
(3) Package SYSTEM &;
'
¥
See Attachment 2, Section F.3. e
t.=;

(4) Representation Clause Restrictions d;
¢
. ot
See Attachment 2, Section F.4. %
3
. 2

(5) Conventions ®
"

See Attachment 2, Section F.S5. gﬂ

A

I3

i
(6) Address Clauses Aa
(J

See Attachment 2, Section F.6. ,3
o

4

. . W]
(7) Unchecked Conversions @ﬁ
’ 3yt

(N
» - : : amAwTh . - L
VX Ada supports the generi function UNCHECXED CONVERSION
with the following restrictions on the <class o©of types Lt
involved: 5
.,
1. The actual subtyre corresponding to the formal <tyre Wy
TARGET must not be an unconstrained array type. i ;ﬁ
WO
2. The actual subtype ccrespcnding to th formal tyre [_
TARGET must not be an unconstrained tyce wiza hays
discriminants. K
l‘::r
:‘5.2
o,
{8) Inpuc-0utput Packages »
T
SZQUENTIAL IO Package : bt
SZQUENTIAL IO can be instantiated with any £ile higk
type, including an unconstrazined arravy type or an R
uncenstrained record type. However, input-outguc

for access tyrzes is errcneous. ,;:
2
o

N
P
-
)
l.g:i‘
I‘|0

¢
A ' X ‘ ; iy NN S PR P P P T T T N e P En T T T S e S P
DCOGOOIRUSCIRN OO A, Nttt e 0 0 Ty o et IO o o o e L T XK » e

Aon o T T Ay mUT
n::.'_nu ERS -2 -

VAX Ada provides <full suppcrt for SEQUENTIAL_IOQ,
. 1 -~ ~m o K -
with the following restricsticns and clarifications:

1. VAX Ada surrorts modes IN_FILI and CUT_FILE for
sequential input-output. Hcwever, VAX Ada does
noct allow the creation of a file of mode
IN_FILE.

2. More than one internal file can be associated
with the same externai file. However, with
default FORM strings, this is only allowed when
all internal files have mcde IN FILE (multiple

readers). If one or more internal £files have
mode OUT_FILE (mixed readers and writers or
multiple writers), then sharing can only be

achieved using FORM strings

3. VAX Ada supports deletion of an external file
which is associated with more than one interrnal
file. In this case, the external file becomes

immediately unavailable for any new
associations, but the current associations are
not affected; the external fil is actuelly
deleted after the last association has been
broken.

4., VAX Ada allows rese ng of shared files, but an
implementation rest*lc ion does not allow the
mode of a file to be changed <from IN_FILE toO

OUT_FILE (an amplificaz<ion of accessing
privileges while the external £file 1is Dbeing
accessed).

-5

DIRECT_IO Package

type CNT is range 0 .. 2147483647;

tyse CNT
suzZty

LCW_LEVEL_IO

R R R U PUN TR N UV U UY TR YR Y Y XN RS R R T ooy g 0 0 Hal 9.8 02 Pad Fof Pak Faf

(9) Package STANDARD :@

type INTEGEIR is range -2147483648 .. 2147483647; .
type SHORT_INTEGER is range -32765 .. 327¢7; :.:.
type SHORT_SHORT_INTEGER is range -128 .. 127; Q}
-- type LONG_INTEGER is not suppcrted °®
* .

type FLOAT is digits 6; 0
type LONG_FLOAT is digits 15; 2
type LONG_LONG_FLOAT is digits 33; '
-- type SHORT_FLOAT is not supported o

type DURATION is delta 1.0E-4 e
range ~131072.0 .. 131071.9399; ﬁf

(10) File Names :

File names follow the conventions and restrictions of the »
arget operating system. 2

RN

b DSOAORDEID Q O SO . LA g :
N R e T T e N s A AN I

Ly St Lt ey, e it P Wy Y E e B Aol e
LI 3. AL SPVESP SO W S ER WY B 2ol il Pl 8l Lo VB VAl ol dab o Wad vad Vol (g8 wiD Voh ol ¥ad Uab AR 038 \al b Kok Jab ved 4.9 Sxg
d T TR

» ’
o ' Attachment 1
, guage Prag
1 This annex defines the pragmas LIST, PAGE, and OPTIMIZE, and
N summarizes the definitions given elsewhere of the remaining language-
i‘fi defined pragmas.
&
R
{L ' The VAX Ada pragma TITLE is also defined in this annex.
1]
Ry
'E; Pragma Meaning
xf@‘ -
‘j:' AST_ENTRY Takes the simple name of a single
! entry as the single argument; at
Rt most one AST_ENTRY pragma
, is allowed for any given entry.
o This pragma must be used in
] combination with the AST_ENTRY
5 attribute, and is only allowed after
K the entry declaration and in the
e same task type specification or
single task as the entry to which
% it applies. This pragma specifies
i that the given entry may be used to
I handle a VAX/VMS asynchronous
‘:: system trap (AST) resulting from a
p VAX/VMS system service call. The
S pragma does not affect normal use
of the entry (see 9.12a).
L4 r}
l::'
)
e
W
::: Predefined Language Pragmas 1-1
®
ol
O
A
I
’:"‘-’
N
!Q‘
o

x

LN}
R AT KRNI (B RN P B RIS Ty e ar VO AT A ‘ -y ; ; . ,
LRI N NN .‘-‘., U"Q“O‘- ‘1'. A.. Wed u,l‘| |'| [y t,|’h..'t‘!ﬁ ..."'n’.’; .' ! Jl...i'n H .' v'l‘q‘.‘\'.\“.l'-. q't.;. p] '1 . ‘l n.l‘!'t':.‘ !"l‘.'!"l ‘:~ :.C "T = ..'l...l ¥ "
» L X0 M A 20

LY. AP VRS RN A R I e R Y 8 ial Sal Ve Pal AR RN g a4, . 5 8.0, 0" .0° - 8.8 0.0 ¢ 98" a%9 nte g9 bty N S WU W R TWLI WL WM 5 - "'i’l"h.‘
5

2 CONTROLLED Takes the simple name of an access
type as the single argument. This
pragma is only allowed immedi-
ately within the deciarative part or
package specification that contains
the declaration of the access type;
the declaration must occur before
the pragma. This pragma is not
allowed for a derived type. This
pragma specifies that automatic
storage reclamation must not be
performed for objects designated
by values of the access type, except
upon leaving the innermost block
statement, subprogram body, or
task body that encloses the access
type declaration, or after leaving
the main program (see 4.8).

3 ELABORATE Takes one or more simple names
denoting library units as arguments.
This pragma is only aillowed imme-
diately after the context clause of
a compilation unit (before the sub-
sequent library unit or secondary
unit). Each argument must be the
simple name of a library unit men-
tioned by the context clause. This
pragma specifies that the corre-
sponding library unit body must be
elaborated before the given compi-
lation unit. If the given compilation
unit is a subunit, the library unit
body must be elaborated before the
body of the ancestor library unit of
the subunit (see 10.5).

EXPORT_EXCEPTION Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a

VAX/VMS Linker global symbol), a

form (ADA or VMS), and a code (a
static integer expression that is in-

; terpreted as a VAX condition code)

1-2 Predelined Language Pragmas

N mASE G PRTR L e
B O D e O G S e S R O T DO K AN OO TN A D DT i e T EA T, o Oy YN

EXPORT_FUNCTION

EXPORT_OBJECT

LBt i R Rt T R T N

)
AVE.

S ¥ a2t 2% w2 A Fav 12" 02t Bt “ab fa¥ B

as arguments. A code value must
be specified when the form is VMS
(the default if the form is not spec-
ified). This pragma is only allowed
at the place of a declarative item,
and must apply to an exception
declared by an earlier declarative
item of the same declarative part
or package specification; it is not
allowed for an exception declared
with a renaming declaration. This
pragma permits an Ada excep-
tion to be handled by programs
written in other VAX languages
(see 13.9a.3.2).

Takes an internal name denoting a
function, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol),
parameter types, and resuit type
as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a function
declared by an earlier declarative
item of the same declarative part
or package specification. In the
case of a function declared as a
compilation unit, the pragma is
only allowed after the function dec-
laration and before any subsequent
compilation unit. This pragma is
not allowed for a function declared
with a renaming declaration, and
is not allowed for a generic func-
tion (it may be given for a generic
instantiation). This pragma permits
an Ada function to be called from
a program written in another VAX
language (see 13.9a.1.4).

Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol)

‘and size designator (a VAX/IVMS

Predefined Language Pragmas 1-3

o e g R e A R SRS N
Akl %, . X A 5 . ™

(ot N o Mg A M NN N

2EL PO
%f“_," e}

5‘ ¢

PSRN PR A w, o*
A NS AT AN N Tl N

Vo ale Ka din A% £%4 A%a 2% V0 89y

1-4 Pregefineg Language Pragmas

. 1 [
,'3\.0\" 0‘»‘\'-.\‘.‘,\':"’& "!.“l‘.‘.‘.")‘.‘a“‘l i‘;"‘n S l‘.‘l’tnl "

EXPORT_PROCEDURE

.y

Pa®a™
‘\.v'~ 23 WY W,

[\

i

VR MRy

.

b 0 08 R Hab 98 at Bt ot e fat G g ¢

Linker global symbol whose value
is the size in bytes of the exported
obje.t) as arguments. This pragma
is only allowed at the place of a
declarative item at the outermost
level of a library package speci-
fication or body, and must apply
to a variable declared by an ear-
lier declarative item of the same
package specification or body;

the variable must be of a type or
subtype that has a constant size

at compile time. This pragma is
not allowed for objects declared
with a renaming declaration, and
is not allowed in a generic unit.
This pragma permits an Ada ob-
ject to be referred to by a routine
written in another VAX language
(see 13.9a.2.2).

Takes an internal name denoting

a procedure, and optionally takes
an external designator (the name of
a VAX/VMS Linker global symbol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a procedure declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a pro-
cedure declared as a compilation
unit, the pragma is only allowed
after the procedure dec'aration and
before any subsequent compilation
unit. This pragma is not allowed
for a procedure declared with a
renaming declaration, and is not
allowed for a generic procedure (it
may be given for a generic instanti-
ation). This pragma permits an Ada
routine to be called from a program

a8)

ks '-r I
%

> o *
NS Hoa

“yw

BRI

- oy
s

L e

N
l-*

T NN O et

B T T R T U R WU NS Y U . U U R W S I WK R A Y u‘;""l $a® ¢ J.. o’ g% 8" " " $a¥ b’ ta* § X
0,

i

»

)
»
written in another VAX language ::'
(see 13.9a.1.4). ..;:
EXPOKT_VALUED_PROCEDURE Takes an internal name denoting >
. a procedure, and optinnally takes o
an external designrator (the name of :‘.ﬁ
a VAX/VMS Linker global symbol) W
and parameter types as arguments. O
This pragma is only allowed at the A
place of a declarative item, and W\
must apply tc a procedure declared o
by an earlier declarative item -of the &
same declarative part or package s
specification. In the case of a pro- pig,
cedure declared as a compilation ;
unit, the pragma is only allowed KA
after the procedure declaration and >
before any subsequent compilation Ve
unit. The first (or only) parameter - Wy
of the procedure must be of mode ::.l
out. This pragma is not allowed "
for a procedure declared with a N
renaming declaration and is not b

allowed for a generic procedure (it »
may be given for a generic instan- Fos

tiation). This pragma permits an bis
Ada procedure to behave as a func- A N

tion that both returns a value and :
causes side effects on its parame- '
ters when it is called from a routine '
written in another VAX language !i
(see 13.9a.1.4). \

h

IMPORT_EXCEPTION Takes an internal name denoting)

an exception, and optionally takes il
an external designator (the name b
of a VAX/VMS Linker global sym- :c'
bol), a form (ADA or VMS), and (A
a code (a static integer expres- .:.f
sion that is interpreted as a VAX ¥
condition code) as arguments. A o
code value is allowed only when > |
the form is VMS (the default if the <
‘ form is not specified). This pragma '..
Predefined Language Pragmas 1-5 e

»
v

- \J

b

“

oy

o g

»
b
&
(N

\
n

o

v

o
D s L L T D o G S P S Yo e v

!
Ay - - Ly SRR I YL FE DL PP [R IR N N] T L AL e T e -, v . W
'9‘4"“'\ ORI ! W .‘J"i,!.‘,l'l.l 5 ,A‘l,n‘l. W, N ,A.n, ~ .u . .u.l, N '.'-F N s ‘. ﬂ' " .n, ~ \ "'\\

IMPORT_FUNCTION

IMPORT_OBJECT

1-6 Predefined Language Pragmas

is only allewed at the place of a
declarative item, and must apply
to an exception declared by an
earlier declarative item of the same
declarative part or package spec-
ification; it is not allowed for an
exception declared with a renaming
declaraticn. This pragma permits a
non-Ada exception (most notably,
a VAX condition) to be handled by
an Ada program (see 13.9a.3.1).

Takes an internal name denoting a
function, and optionally takes an
external designator (the name of a
VAXI/VMS Linker global symbol),
parameter types, result type, and
mechanism as arguments. Pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma

is only allowed at the place of a
declarative item, and must apply

to a function declared by an earlier
declarative item of the same declar-
ative part or package specification.
In the case of a function declared
as a compilation unit, the pragma is
only allowed after the function dec-
laration and before any subsequent
compilation unit. This pragma is al-
lowed ror a function declared with
a renaming declaration; it is not
allowed for a generic function or a
generic function instantiation. This
pragma permits a non-Ada rou-
tine to be used as an Ada function
(see 13.9a.1.1).

Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
VAX/VMS Linker giooat symbol)
and size (a VAX/VL{S Lirker global
symbol whose value is the size in

: bytes of the imported object) as

arguments. This pragma is only

LA SANA LER LR RSRLE
" - o N B

AR AN AN YRR XY AN X Pl g ARt URt 1Rt S ataiata‘ath ovE e aie aty RN T R “od aab waly * TN Y OV IR TN YX)

*
M

B3 :
1':: aliowed at the place of a declara-

tive item at the outermost level of

a library package specification or

e ’ body, and must apply to a variable

J,, declared by an earlier declarative

:,: item of the same package specifi-
A cation or body: the variable must

) ' be of a type or subtype that has a

constant size at compile time. This
pragma is not allowed for objects

AN

;i': declared with a renaming declara-

¢ tion, and is not allowed in a generic

4 unit. This pragma permits storage ‘

pON declared in a non-Ada routine to)

& be referred to by an Ada program g
(see 13.9a.2.1).

o IMPORT_PROCEDURE Takes an internal name denocting

‘:'\ a procedure, and optionally takes

A an external designator (the name of

K a VAX/VMS Linker global symbol)

i) parameter types, and mechanism
as arguments. Pragma INTERFACE

must be used with this pragma

¥,
":" (see 13.9). This pragma is only .
o) allowed at the place of a declar-
Py ative item, and must apply to a
) : ;
o procedure declared by an earlier
] declarative item ot the same declar-
) ative part or package specification.
) In the case of a procedure declared q
\ as a compilation unit, the pragma i
‘*:0 is only allowed after the proce-
" dure declaration and before any .
X subsequent compilation unit. This ’
pragma is allowed for a procedure
i deciared with a renaming declara-
,:' tion; it is not allowed for a generic
o procedure or a generic procedure 4
) instantiation. This pragma permits
::. a non-Ada routine to be used as an
$ Ada procedure (see 13.9a.1.1).
‘ IMPORT_VALUED_PROCEDURE Takes an internal name denating a
e procedure, and optionally takes an
o " external designator (the name of a
%
Predefined Language Pragmas 1-7
\
W 9
f‘.:‘
y
N
9 :
7y,]
i

) (/] 3%
R R A e e S A T A ™ SO

279,00 0% S \"-““,'\-'\4.\'\ A%] ™) '\‘;‘&'\-’3*1 “'.’\
She 03 v o v 't g . N

i b O X NN

LT RO WU W WIW Y

\

o

#,

fa

>

A

o

L

VAX/VMS Linker global symbol), "

parameter types. and mecharism 0y
ag arguments. Pragma INTERFACE »

’ must be used with this pragma \
(see 13.9). This pragma is only .,‘
allowed at the place of a declar- v
ative item, and must apply to a
procedure declared by an earlier .l’,
declarative item of the same declar- &
ative part or package specification. 3
In the case of a procedure declared 2
as a compilation unit, the pragma]
is only allowed after the procedure 4
declaration and before any subse- 2y
quent compilation unit. The first okt
(or only) parameter of the proce-)
dure must be of mode out. This o
pragma is allowed for a procedure ~
declared with a renaming declara- *
tion; it is not allowed for a generic ‘
procedure. This pragma permits A
a non-Ada routine that returns a)
value and causes side effects on its D
parameters to be used as an Ada)
procedure (see 13.9a.1.1). 'l.‘

N
4 INLINE Takes one or more names as ar-) .’t
guments; each name is either the Yy
name of a subprogram or the name D.
of a generic subprogram. This rod
pragma is only allowed at the place "
of a declarative item in a declarative o
part or package specification, or af- - '0:
ter a library unit in a compilation, Ty
but before any subsequent compi- =
lation unit. This pragma specifies .11.
that the subprogram bodies should s
be expanded inline at each call AL
whenever possible; in the case of v
a generic subprogram, the pragma 3
applies to calls of its instantiations Q‘
(see 6.3.2). »
5 INTERFACE Takes a language name and a sub- i:
" program name as arguments. This : X
o
1-8 Predefined Language Pragmas :'
)
L
o
Y
e (
I) g
e
]

2T AL

[LY - LI LS s LA A » M ¥ Lg L8 (L8 u® . { 3
o "y - N .‘t“l‘.‘l'.) X '~‘ _'.t.: !Q" ~ \\' t\'- !“u n.&o.l -tt O " A a! -!\‘!‘C. U 0N Mo 'Jq.?.n

N o
.s. 70,‘ I.."gl.'l o o

LIST

LONG_FLOAT

pragma is allowed at the place of a
declarative itern, and must agply in
this case to a subprogram declared
by an earlier declarative item of the
same declarative part or package
specification. This pragma is aiso
allowed for a library unit; in this
case the pragma must appear after
the subprogram declaration, and
before any subsequent compila-
tion unit. This pragma specifies
the other language (and thereby
the calling conventions) and in-.
forms the compiler that an object
module will be supplied for the
corresponding subprogram (see
13.9).

In VAX Ada, pragma INTERFACE
is required in combination with
pragmas IMPORT_FUNCTION,
IMPORT_PROCEDURE, and
IMPORT_VALUED_PROCEDURE
(see 13.9a.1).

Takes orie of the identifiers ON
or OFF as the single argument.
This pragma is allowed anywhere
a pragma is allowed. It specifies
that listing of the compilation is to
be continued or suspended until
a LIST pragma with the opposite
argument is given within the same
compilation. The pragma itself

is always listed if the compiler is
producing a listing.

Takes either D_FLOAT or G_
FLOAT as the single argument.
The default is G_FLOAT. This
pragma is only allowed at the start

.of a compilation, before the first
‘compilation unit (if anv) of the

Predefined Language Pragmas 1-9

A AN
v e

-
ool
..

NrSrAS YT ER I AL @ T
I M I R

o1

2

5 ceow
J‘;'

‘{‘

R g
* K

ot

“u P
ye N]
"‘:‘ﬂ 2

5

" "5 v

P I I
PR
[- -

XEPAAE

5@ <7
S

R AN R R O SN N T RN, W N WU VU T T O O N O O T T R s o YT %2 8% At 4" 4°8 0" 86 4t | FIUY

L s SVeLYL 'D'
] ““
e
) ot
-_:: §
N
~
! compilation. It specifies the choice A
, of representation to be used for the o
predefined type LONG_FLOAT o
' in package STANDARD and for i
floating point type declarations with :"
digits specified in the range 7..15 Y
(see 3.5.7a). a':,'
oty
: []
MAIN_STORAGE Takes one or two nonnegative oY
static siinple expressions of some o
integer type as arguments. This ¥
pragma is only allowed in the oy
outermost declarative part of a N
library subprogram; at most one b
such pragma is allowed in a library d ;
2

subprogram. It has an effect only
when the subprogram to which it
applies is used as a main program.
This pragma causes a fixed-size
stack to be created for a main task

EE57

K

(the task associated with a main ;

program), and determines the i
number of storage units (bytes) to <
be allocated for the stack working -
storage area or guard pages or b
both. The value specified for either . ":.
or both the working storage area O

and guard pages is rounded up i
to an integral number of pages.)

A value of zero for the working W0
storage area results in the use of '
a default size; a value of zero for .- ..0::
the guard pages resuits in no guard]
storage. A negative value for either ®
working storage or guard pages y
causes the pragma to be ignored |=:
(see 13.2b). gt
N
7 MEMORY_SIZE Takes a numeric literal as the "f
single argument. This pragma :
is only allowed at the start of o
; a compilation, before the first %y
compilation unit (if any) of the ,'}j; '
2
1-10 Predetfined Language Pragmas py,

LI PR T T LRI

.
ot '_\ LR YRR SIS

SRS RS

R O N RN

.y W
RROGULUC U MU OMN

R R T LR LS T X RO W VO SO YO O YO YO YOU PO R TOU AN IR A T
[4
8 OPTIMIZE
9 PACK
10 PAGE
11 PRIORITY

L » AT RS LI PO S L L
AN SRR PR NN

,

compilation. The effect of this
pragma is to use the value of the
specified numeric literal for the
definition of the named number
MEMORY_SIZE (see 13.7).

Takes one of the identifiers TIME
or SPACE as the single argument.
This pragma is only allowed within
a declarative part and it applies

to the block or body enclosing

the declarative part. It specifies
whether time or space is the pri-
mary optimization criterion.

In VAX Ada, this pragma is only
allowed immediately within a
declarative part of a body declara-
tion.

Takes the simple name of a record
or array type as the single argu-
ment. The allowed positions for
this pragma, and the restrictions on
the named type, are governed by
the same rules as for a representa-
tion clause. The pragma specifies
that storage minimization should be
the main criterion when selecting
the representation of the given type
(see 13.1).

This pragma has no argument,
and is allowed anywhere a pragma
is allowed. It specifies that the
program text which follows the
pragma should start on a new
page (if the compiler is currently
producing a listing).

Takes a static expression of the pre-
defined integer subtvpe PRIORITY
as the single argument. This
pragma is only allowed within

the specification of a task unit or

Predefined Language Pragmas 1-11

. ."g -/.V,- ._r.;f ‘f 5&

0t a4t 028 0% 0s® 04" 0at Ha”

v gat

gf\f!,fgp'-,' LSRN "' Y

= S

%

RS

el

Rt 1

Aty
A A

2 P
e

%,

L AD FH
T o 50,2

52

2L

._..
=g

o™

TSR ST T S LT U WG WU WU WU WU A S YU NS WU W W WY W o S N WU W MU WU VW OO OOy ‘\‘v~t'

1
b\t
. .ﬁ'.
L4
N
| o
immediately within the outermost S
declarative part of a main program. A
It specifies the priority of the task [
. (or tasks of the task tvpe) or the Wy,
priority of the main program (see ::;"
98) "'
l‘::
wW
PSECT_OBJECT Takes an internal name denoting :l_:e
an obiect, and optionally takes an :
external designator (the name of 7N
a program section) and a size (a "'
VAX/VMS Linker global symbol ",o
whose value is interpreted as ¢
the size in bytes of the exported "o
/imported object) as arguments. -
This pragma is only allowed at the B
place of a declarative item at the ‘:'5
outermaost level of a library package W
specification or body, and must t:f‘
apply to a variable declared by an :.'4
earlier declarative item of the same A
package specification or body; »
the variable must be of a type or o
subtype that has a constant size "::‘.
at compile time. This pragma is W
not allowed for an object declared sy
with a renaming declaration, and is e
not allowed in a generic unit. This Y
pragma enables the shared use of »
objects that are stored in overlaid i
program sections (see 13.9a.2.3). 1':
e
RS
12 SHARED Takes the simple name of a vari- X
able as the single argument. This :,i
pragma is allowed only for a vari- »
able declared by an object decla- oty
ration and whose type is a scalar ,:.’:
or access type; the variable decla- G
ration and the pragma must both : ‘0.:1'
occur (in this order) immediately (X
within the same declarative part or \
package specification. This pragma L3
> g U
specifies that every read or update ':'c:
iy
iy
L) "
1-12 Predefined Language Pragmas ::o
W
Y
™
Y
R
2,
4
"
|'|:Q
"
'n:f
Whov
)
K

. Ly . Y L 20) R Y M AP T A AW CACATN TP AR P A LY e)
-3“-."-!"&“1"';” by '.u.'..» !’A‘S‘*’!‘n'. l.,. (\ A l.' l.n l'q.l'- L) ‘ n“- I' .”‘. J) L Ay ‘n ‘t .’l .- 0 ‘h E “‘ ..‘ '. }' - '- f ,-f '-

o s e N o

13

STORAGE_UNIT

SUPPRESS

of the variable is a synchroniza-
tion point for that vanable. An
implementaticn must restrict the
objects for which this pragma is
allowed to obiects for which each of
direct reading and direct updating
is implemented as an indivisible
operation (see 9.11).

VAX Ada does not support pragma
SHARED (see VOLATILE).

Takes a numeric literal as the
single argument. This pragma

is only allowed at the start of

a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this
pragma is to use the value of the
specified numeric literal for the
definition of the named number
STORAGE_UNIT (see 13.7).

In VAX Ada, the only argument
allowed for this pragma is eight (8).

Takes as arguments the identifier
of a check and optionally also

the name of either an object, a
type or subtype, a subprogram, a
task unit, or a generic unit. This
pragma is only allowed either im-
mediately within a declarative part
or immediatelv within a package
specification. In the latter case, the
only allowed form is with a name
that denotes an entity (or several
overloaded subprograms) declared
immediately within the package
specification. The permission to
omit the given check extends from
the place of the pragma to the end
of the declarative region associated

Predefined Language Pragmas 1-13

ot OO Q60 O OO ' 1 Q ((B, Py A% P " » -
B et e e e e T R O e o O O N X KRR A K)

SUPPRESS_ALL

15 SYSTEM_NAME

1-14 Predefined Lanquage Pragmas

with the innermost enclosing block
statement or program unit. For &
pragma given in a package specifi-
cation, the permission extends to
the end of the scope of the named
entity.

If the pragma includes a name, the
permission to omit the given check
is further restricted: it is given only
for operations on the named object
or on all objects of the base type
of a named type or subtype; for
calls of a named subprogram; for
activations of tasks of the named
task type; or for instantiations of
the given generic unit (see 11.7).

VAX Ada does not support pragma
SUPPRESS (see SUPPRESS_ALL).

This pragma has no argument

and is only allowed following a
compilation unit. This pragma
specifies-that all run-time checks in
the unit are suppressed (see 11.7).

Takes an enumeration literal as
the single argument. This pragma
is only allowed at the start of

a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this
pragma is to use the enumeration
literal with the specified identifier
for the definition of the constant
SYSTEM_NAME. This pragma

is only allowed if the specified
identifier corresponds to one of the
literals of the tvpe NAME declared

in the package SYSTEM (see 13.7).

4

»>

T aE R AN (o3 v 8 #50 o Val ral < §.Y al a8, /gl vad. 2, AU T AN ¥, W e R vy Sap o) Bl Sal Ueh tah Waf b} Y, A ot 0l Vo b ",
b ot
<
i
%
b
\)
1,
TASK_STORAGE Takes the simple name of a task .:',,
type and a static expression of ®
. some integer type as arguments. =
This pragma is allowed anywhere ‘.’:.'
that a task storage specification is Myl
allowed; that is, the declaration of N
the tusk type io which the pragma Yy
applies and the pragma must both hg
occur (in this order) immediately
within the same declarative part, e
package specification, or task e
specification. The effect of this c‘::
pragma is to use the value of ::0.
the expression as the number of 0.‘::
storage units (bytes) to be allocated -
as guard storage. The value is ;,
rounded up to an integral number oy
of pages: a value of zero results in e
no guard storage; a negative value “
causes the pragma to be ignored Y
(see 13.2a). b
4
;\
TIME_SLICE Takes a static expression of %
the predefined fixed point .n&
type DURATION (in package o
STANDARD) as the single argu- W
ment. This pragma is only allowed
in the outermost declarative part ~-
of a library subprogram, and at :.h'
most one such pragma is allowed =
in a library subprogram. It has an . ":
effect only when the subprogram to "
which it applies is used as a main !
program. This pragma specifies the o
nominal amount of elapsed time 'y-‘_':
permitted for the execution of a o
task when other tasks of the same J\
priority are also eligible for exe- x4
cution. A positive, nonzero value o
of the static expression enables ®
round-robin scheduling for all tasks v
in the subprogram; a negative or . 3
zero value disables it (see 9.8a). Yy
!a‘
Predetined Language Pragmas 1-15§ "
o
‘...)
.\.A
=
e
M
L
o
o
W

i}

A

) . . W - - - o W't
SN EW MO !) ,

LA ,»i‘»z-’=)~" ".“1""" $ %‘."V"’il"i ».I.,‘.I.’.l‘?"'!h'!’t.'»‘h.»“\‘-'ll"'-.‘.:'..-..?'i‘l"&."“'.\‘."..' «"ﬂ*'.".u‘”s" :..'\ ‘.'\“’t .’?.' x‘.’.@“ln‘?‘b’.‘.‘ ...i s X '.o '.o.\ ’.ﬂ !ﬁ N ,.c.‘::‘

PP L U N U RGN 00 N W L WU LTI ., W W W S R TR S T R U O o o o oo

VOLATILE

1-16 Predefined Language Pragmas

OOV O O OO DR NN DR O T DX, fn",-,'l.t.'.h".k !luh !

Takes a title or a subtitle string, or
both, in either order. as arguments.
Pragma TITLE has the form:

pragma TITLE (titling-optiom
(.titling-option]):

titling-option =

[TITLE =»>) setring_lizeral

| [SUBTITLE =>) etring_litersl

This pragma is allowed anyiwhere a
pragma is allowed: the given strings
supersedes the default title and/or
subtitle portions of a compilation
listing.

Takes the simple name of a vari-
able as the single argument. This
pragma is only allowed for a vari-
able declared bv an object declara-
tion. The variable declaration and
the pragma must both occur (in this
order) immediately within the same
declarative part or package speci-
fication." The pragma must appear
before any occurrence of the name
of the variable other than in an ad-
dress clause or in one of the VAX
Ada pragmas IMPORT_OBJECT,
EXPORT_OBJECT, or PSECT_
OBJECT. The variable cannot be
declared by a renaming declaration.
The VOLATILE pragma specifies
that the variable may be modified
asynchronously. This pragma in-
structs the compiier to obtain the
value of a variable from memory
each time it is used {see 9.11).

St L A A SaN

L%
SN

LI

-0...14 \ P2

> T2

aa

-
¥ S

Pl oo o

Z 72

%
A N
L,

ok s

A e g i

'

%

O CCrON SN
P EEER

Attachment 2
Implementation-Dependent
i Characteristics

R NOTE

W This appendix is not part of the standard definition of the

5;: Ada programming language.

Vs This appendix summarizes the implementation-dependent characteris-
tics of VAX Ada by

! ¢ Listing the VAX Ada pragmas and attributes.

kN e Giving the specification of the package SYSTEM.

ol * Presenting the restrictions on representation clauses and unchecked
s type conversions.

‘ * Giving the conventions for names denoting implementation-
iy dependent components in record representation clauses.

RS * Giving the interpretation of expressions in address clauses.

W * Presenting the implementation-dependent characteristics of the -
Xy , input-output packages.
¢ Presenting other implementation-dependent characteristics.

KA Implementation-Dependent Characteristics 2-1

Ty ¥ T A, R R I I YRS PR
OO P o e D e i P AT E L

A L S R R N PN AT AL RS L LG T w W W™ .
T L N e A T ,J.I.Or! \\ !

P . TR IOE R AN AR AN N > dat 9.7 #g° * mac a2t 4p? v gat Wa* Ba¥, 4 gav U AR - CR TR TSR 1L L ..-... . v vabat §2° v a0t a'q\ ‘.l..

F.1 Implementation-Dependent Pragmas

VAX Ada provides the following pragmas, which are defined elsewhere
in the text. In addition, VAX Ada restricts the predefined ianguage
pragmas INLINE and INTERFACE, and provides alternatives to the
pragmas SHARED and SUPPRESS (VOLATILE and SUPPRESS_ALL).
See Annex B for a descriptive pragma summary.

o AST_ENTRY (see 9.12a)

« EXPORT_EXCEPTION (see 13.9a.3.2)

« EXPORT_FUNCTION (see 13.%9a.1.4)

e EXPOR1_OBJECT (see 13.9a.2.2)

¢ EXPORT_PROCEDURF (see 13.9a.1.4)

s EXPORT_VALUED_PROCEDURE (see 13.9a.1.4)
e IMPORT_EXCEPTION (see 13.9a.3.1)

e IMPORT_FUNCTION (see 13.9a.1.1)

e IMPORT_OBJECT (see 13.9a.2.1)

s IMPORT_PROCEDURE (see 13.9a.1.1)

e IMPORT_VALUED_PROCEDURE (see 13.9a.1.1)
e LONG_FLOAT (see 3.5.7a)

¢ MAIN_STORAGE (see 13.2b)

e PSECT_OBJECT (see 13.9a.2.3)

s SUPPRESS_ALL (see 11.7)

* TASK_STORAGE (see 13.2a)

» TIME_SLICE (see 9.8a)

* TITLE (see B)

¢ VOLATILE (see 9.11)

2-2 Implementation-Dependent Charactenstics

v Y HYAVEAFS NV RTY BF hF L' I N B YT ¥ -, A AL AT LY . N AN] Ll WAl W) ' N N A
£ ERU VAN VR AN N 0 s 00 0 At W A e e Vs, T T T T, W R AT A A W

SIST®

o o
ey

3

o oL
poop O

o o
LY

P VAT AT LT T S M WL W WA S M U WG WU W WU WU W WU WU MO R PR AR A A o gy A8 ey b sy

RV T

X —‘.;‘:.s'. et

\\‘\

x

F.2 Implementation-Dependent Attributes

N

%

VAX Ada provides the following attributes, which are defined else-
where in the text. See Annex A for a descriptive attribute summary.

e AST_ENTRY (see 9.12a)

o BIT (see 13.7.2)

* MACHINL_SIZE (see 13.7.2)

e NULL_PARAMETER (see 13.9a.1.3)
e TYPE_CLASS (see 13.7a.2)

=27

-

A A

W
>
. ge N
F.3 Specification of the Package System ;
(o
package SYSTEN ia .’:;l
Sype NANE is (VAX_VNS, VAXELN); K :f
SYSTEN_NANE : coastaat NAME := VAX_VNS; .:u;
STORAGE_UNIT : cemetaany := §; ay
NEMORY _SIZE : comstant :wm 2ee31-1; .
NAX_INT : CORStAAt :w Qes3i-}; 4 ,
NIN_INT : constant := -(3e031); e
NAX_DICITS : constamt :s 13;) :.:
MAX_MANTISSA : comstaat := 3§, .n'
FINE_DELIA : constaas = 2.0es(-31);) ety
TICA : constant :w 10.0s¢(-2); .:,
)
subtype PRIORITY is INTEGER fange O .. 15; e
»
== Address type ;
type ADDRESS is private; b,
ADDRESS_ZERG : coastaat ADDRESS: -n \:u
function *+* (LEFT : ADDRESS; RICHT : INTECER) retura ADDRESS: R,
funetion *«* (LEFT : INTEGER; RIGHT : ADDRESS) returm ADDRESS; 'Y
funetion *-* (LEFT : ADDRESS; RIGHT : ADDRESS) retura INTECER: <5
function *-* (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS; :
-- funetion *=" (LEFY, RICHT : ADDRESS) retara BOCLEAN; 'S,
-~ funetion /=" (LEFY, RIGHT : ADDRESS) retura BOOLEAN; &
function “<* (LEZFT, RICHT : ADDRESS) recura BOOLEAN; VS
fonction “<=* (LEFT, RICHT : ADDRESS) retura BOOLEAN; }'J\
function "> (LZFT, RIGHT : ACDRESS) resura BOOLEAN; X
function “>=* (LEFT, RIGHT : ADDRESS) retura BODLEAN;
X
L]
ot
Y
{\.-v
Implementation-Dependent Characteristics 2-3 s
(S
>
"%
o
O
~ .f
~ i
-
]
Tal
*
23

e,

\l
3

3 - : . T - ~e 5 P ~ ™ > e
P AT S N N 1 N L N P N A N NN R AN NN N et

) B Al

BB R Wi IR L S R W R o i WL W0 o WU W A PR T

-a

2-4

Note that because ADDRESS is a private type
the functions *=* gad "/ are already available and

do not have to bde explicitly defined

[
generic

type TARCET is private;

faacsion FETCH_FRON_ADDRESS (A : ADDRESS) reSura TARGET;

geasrie
type TARCET 1s private;

procedure ASSIGN_TO0_ADDRESS (a : ADDRESS; T : TARGET);

type IYPE_CLASS 48 (TYPE_CLASS_ENUNERATION,
TYPE.CLASS_INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDAESS) ;

VAXI Ada floating point type declarstions for the VAI
hardvare floating point data types

type D_FLOAT is smplementation_defined;
Sype F_FLOAT s implementation_defined;
type G_FLOAT is implementation_defined;
type H_FLOAT is implementation_defined;
AST handler type

type AST_HANDLER is limited private;

NO_AST_HANDLER : constaat AST_HANDLER;

Non-Ada exception

NON_ADA_ERROR : exception;

VAX hardvare-oriented types and functions

type BIT_ARRAY 4is array (INTEGER ranmge <>) of BOOLEAN;

pragma PACK(BIT_ARRAY);

subtype BIT_ARRAY_8 is BIT_ARRAY (0 .. T7);
subtype BIT_ANRAY_16 is BIT_ARRAY (0 .. 16);
subdtype BIT_ARRAY_32 ie BIT_ARRAY (0 .. 31):
subtype BIT_ARRAY_64 s BIT_ARRAY (0 .. 63);

type UNSICIMED _SYTE 4s range 0 .. 265,
for UNSICHNED BYTE'SIZE wuse &;

Implementation-Dependent Characteristics

T R TR T T G R S PR LY R - - ga v gt m m g -
“-"h‘ .\'.' 'h '0."!-'.0 W ’." Moo X .w.‘.| (2 "' f ’, b l ' .‘a"'t '.\

O

HUADAIARLNANNN

e

»

y R St XN

a

"

g
"

e A]

o o
>
- <

" . e

2o N

y ¢
PO IO IO RN

P L
-

"“l'l ‘lﬂ - ﬁ. i

r

R MRy -
MY

3

4

'l'.?;

s

T

e

/7 ¢
Koy A

LY

R R R AT U o L TR N T I IRy Rt el e ek e Rt aat e B g T " "
! AKX Lt (a1 k 8 4 eV gav

.
t
14
.
*
.
’
.
.
.
[4
»

2% . r\f‘.f.hf'; 1
- -~

-
-,

bt

funetion “not* (LErFT . UNSIGNED_BYTE) reswra UNSIQNED BYTE;

fencsion “and"~ (LEFT, RIGHT : UNSIGNED _BYTE) retura UNSIGHED BYIEL;

funesion “or® (LEFT, RICHT : UNSIGNED _BYTE) resura UNSIGNED BYTE;

function “xor® (LEFY, RICHT : UNSICNED_BYTE) resura UNSICNED BYTE:
[4

=

25

fuactios TO_UNSIGNED_BYTE (X : BIT_ARRAY_8) retura UNSICNED BYTE;
function TO_BIT_ARRAY_8 (X : UNSISNED_BYTE) retura BIT_AMRAY 8

ot T8 4
-
¢

!

Sype UNSIGNED _BYTE_ARRAY is array (INTEGER raage) of UNSIQNED _BYTE;

type UNSIGNED _¥ORD is range O .. 08536
for UNSIGNED_YORD'SIZE wae 16; @
" functiea “not® (LEFT : UNSICNED_WORD) rstura UNSICNED_YORD: "
fuaction ®and® (LEFT, RICHT : UNSICNED_YORD) retura UNSIGNED_¥CRD;
function “or®* (LEFY, RICHT : UNSICNED_VYORD) retura UNSIGNED_VORD; .:_
funesion ®xor® (LEFT, AIQHT : UNSICNED_YORD) retura UNSIGNED_YORD; I
F)L
\
function TO_UNSIGNED_VWOAD (X : BIT_ARRAY_16) retura UNSIGNED_VWORD: iy
fumction TO_BIT_ARRAY_16 (X : UNSIGNED_YOAD) retvara BIT_ARRAY_16; []
type UNSICNED_YORD_ARNAY s array (INTECER raage <») of UNSIGHMED VOAD, '.':"
Y
type UNSICNED_LONGYORD is ramge NIN_INT .. MAX_INT; ;'.
for UNSIGNED _LONCYORD'SIZE wse 323; ',p_,,
i
function °*not® (LEFT : UNSIUNED_LONGYORD) retura UNSIGNED_LONGWORD: '
faaction "and® (LEFT, RIGHT : UNSIGNED_LONGWORD) retura UNSIGNED_LONGYORD; .
faactiea "or* (LEFT, RICHT : UNSICNED_LONGYORD) rvesura UNSIGNED_LONCWOAD: Py
funetion “xor® (LEFT, RICHT : UNSICNED_LONGYOAD) retura UNSIGNED_LONGYORD; o ‘
0,5

foactioa IO_UNSIGNED_LONCYORD (X : BIT_ARRAY_32)

retara UNSIGNED_LONGWORD:
function TO_BIT_ARRAY_32 (X : UNSIGNED_LONCYORD) retuzra BIT_ARRAY_32;

o 2

type UNSIGNED_LONGWORD_ARRAY is 9_
array (INTEGER tange <>) of UNSIGNED_LONGYORD; _-:.’
L]
v
typs UNSIGNED_QUADVWORD is record b
L0 : UNSIGNED_LONGYORD: ey
L1 : UNSICNED_LONCYORD;
ond recard; .
for UNSIGNED_QUADYORD'SIZE use 64; .‘
"‘::\
function *aot® (LEFT : UNSIGNED_QUADYORD) retura UNSIGNED _QUADYORD; :'_
fuactioa “and® (LEFT, RIGHT : UNSIGNED_QUADYORD) retara UNSIGNED_QUADYORD; Wl
fumctios ®or® (LEFT, RIGHT : UNSIGNED_QUADYORD) retura UNSIGNED_QUADYORD; ‘\C.
function *xor® (LEFT, RICHT : UNSIGNED_QUADYORD) retura UNSIGNED_QUADWORD; o
&
iy
function TO_UNSICNED_SUADYORD (X : BIT_ARRAY_84) ¥
retara UNSIGIED_QUACYORD; . 4
function TO_BIT_ARRAY_64 (X : UNSIGMED _QUADYORD) retura BIT _ARRAY_64; ::.
NV
T
, . “
Implementation-Dependent Characteristics 2-5 “:i"
o
°
P
' d
M
L2y
..l
®
ot
A
'
{ (]
l. ¢
v ."
®
e’
|"'q

RN QLAY y ; R ‘ . .
RN Ciuf\\, Yot ‘ MO M Y e Y "J‘ s \(A AN 1' ' T M L e "F"{f Q"’"}*} .';‘.':’ \:-; A
- ¥ N A¥, A o B e W 1% - -

ANANRRNAR RS KA SRR R TR YK B L R O R R W " LD mep Fulh Vol $ah b’ S A g 8 A P 2" at A AR 'S a%h e &.av
.:-J.
®
il
2
Ay
""J‘
‘« 8

type UNSICNED GUADVORD_ARRAT 1g «
array (INTEGER range <>) of UNSIGNED_QUADWORD; ."
fanction TO_ADDRESS (I': INTECER) retura ADDRESS: ®
tunction TO_ADDRESS (I : UNSIGNED_LONCVQRD) retura ADDRESS; J;
functioa TO_ADDRESS (X : unwversal_integer) resara ADDRESS; e 3
»
functtvn T0_INTEGER (X : ADDRESS) vetura INTEGER; §
function TO_UNSICNED_LONCYORD (X : ADDRESS) retsra UNSIGNED LONGWOAD; s
function TJ_UNSIGNED _LONCYORD (X : ASY_HAHDLER) retsra UNSIGNED LrWCUORE, ‘\
[]
-- Conventional names for static subtypes of type UNSICNED_LONGYORD -,,
aubtype UNSICNED. 1 4s UNSICNED LONGYQRD ruage O .. 2se i{-{; :Il\
ssbtype UNSIGNED 3 4s UNSIGNED_LONGYOAD raage O .. 32ee 2-1; .4:3,
subtype UNSIGNED. 3 1 UNSICNED_LONCYORD range O .. 2ee 3-1; Loy
subtype UNSICNED_4 d1e UNSICNED _LONGYOAD raunge 0 .. 2ee 4-1; Pt
saltype UNSIGNED_ 6 4s UNSIGNED LONGYORD range O .. Jee 65-1;
sudtype UNSIGHED_8 4s UNSIGNED LONGWORD raage O .. 2ee 6-1; &
subtype UNSIGNED.T is UNSIGNED LONGCYQRD raage 0 .. 2ss 7-1; w
sgbtype UNSICNED_8 4e UNSICNED_LONCYQRD range 0 .. 2se 8-1; » '.Q
eubtype UNSIGNED_ 9 4 UNSIGNED_LONGYORD range O .. 2¢¢ 9-1; Yot
sudtype UNSICNED_ 10 4s UNSIGCNED _LONCYORD range O .. 2e010-i; %
o X
subtype UNSICNED_11 is UNSIGNED _LONGCYORD raage O .. 2eeif-{; '..¢
subtype UNSIGNED_12 is UNSIGNED_LONGWORD range O .. Jvsi32-1; ah
aubtype UNSIGNED_ 13 is UNSIGWEw_ooNCYWORD ranga O .. 2ee13-1; ®
subtype UNSICNED_14 s UNSICNED_LONGYORD ramge 0O .. 2eeié-1; e
subtype UNSIGNED_15 (s UNSICNED_LOHNGYORD range O .. 2eei5-1; SA
s
aubtype UNSICNED_16 4is UNSICKED_LONGYORD range O .. 3se16-1; s":
sudtype UNSIGNED_17 {s UNSIGNED_LONCYORD range O .. 2es17-1; . MY
sudtype UNSICHED_ 18 is UNSIGNED_LONCYORD range O .. 2se18-1; 5-:'
audtype UNSIGNED_19 4s UNSICNED _LONCVYORD range O .. 2ve19-1; Lo
subtype UNSIGNED.20 s UNSICNED _LONGYORD range O .. 2ve20-}1; PY
sabtype UNSIGNED_ 21 is UNSICMED_LONCYORD range O .. 2vs21-%; ::\--
subtype UNSIGNED_22 1s UNSIGNED LONCYORD range 0 .. 29s22-1; _'\.3
aubtype UNSIGNED_23 4s UNSIGNED_LONCWORD range O .. 20e23-%1; ."M“
sabtype UNMSICNED_24 is UNSICHNED_LONCYORD range O .. 2ve24-1; r"'
subtype UNSICNED_26 is UNSIGNED _LONGYORD range O .. 2ee25-1; - (n_'
.il i
subtype UNSICNED_ 268 s UNSICHED _LONCYORD range O .. 2ee20-1; (AN
subtype UNSICHED 27 is UNSIGHNED LONCYORD range O .. 2e=27-1; (]
sabtype UNSIGNED_ 28 {e UNSIGHED _LONCYORD range O .. 2se28-1; oA
subtype UNSICNED_29 te UNSICNED LONCYWORD raange O .. 2ee29-i; BN
subtype UNSIGNED_30 {s UNSIGNED _LONGYORD range O .. 2¢030-1; “ o
esadtype CUSIGHED _31 1s UNSICHED _LONCYORD range O .. 2es31-1; ';-\.'
L%
.
-- Funcsion for obtaining giobal symbol-values "‘: ¢
Fala®
funcsion INPIRI_VALUE (SYNBOL . STRINC) retura UNSICNED_LONGYORD;
FI
-~
== VAX device and process register operations '_\"
N
Iy
)
2-6 Implementanhon-Dependent Charactenstics AN

- -
Pa)

funcvion READ_REQISTER (SOURCE : UMSICNED_BYTE) revsura UNSICNED BYTE:
function NEAD_REGISTER (SOURCE : UNSIGNED_¥ORD) retyra UNSIGNED_YORD:
funevien READ_RECISTER (SQURCE : UNSICNED_LONGYORD) retera UNSIGNED_LONGYORD;

LA LS

' procedurs YRITE_REGISTER{SOURCE : UNSIGNED BYTE: .
X TARGET : et UNSIGNED_BYTE); o
3 procedurs YRITE_RECISTER{SJURCE : UNSIGNED_VORD; :
{ TARGET : euv UNSICNED_Y¥ORD):
K procedure YRITE_AEGISTER(SOURCE : UNSIONED.LONGYORD:

TARGEY : eu§ UNSIGNED, LONGYORD):

fuactjon NFPA (REG_NUMBEMR : INTECER) retura UNSICNED_LONGWORD;)
B procedure NIPR (REG_NUMBER : INTEGEN;
SOURCE : UNSIGNED_LONGYORD): Bt

VAX interlocksd-instruction procedures

procedure CLEAN_INTERLOCKED (BIT : 4a out BOOLEAN;)
OLD_VALUE : ost BOOLEAN); S
procedure SEI_INTERLOCKED (BIT : 4n out BOOLEAN: ,

OLD_VALUE : out BOQLEAN);

n

»

: type ALIGNED_SHONT_INTEGER is e

2 record A

X VALUE : SHORY_INTEGER := 0; ‘,‘

4 end record; %Y

for ALIGNED_SHORT_INTEGER use W

record]

! at mod 32; "
ead record; K

y procedare ADD_INTERLOCKED (ADDEND : ia SHORT_INTEGER; o

| AUCEND : ia out ALIGNED_SHORI_INTEGEK;)

| SICN : out INTEGER) ; ot
L)

NK_FIRST);

type INSQ_STATUS &s (OK_NOT_FIRST, FAIL_NO_LOCK,

A type RENG_STATUS &s (OK_NOT_ENPTY, FAIL_NO_LOCK, "
! OK_ENPTY, FAIL_YAS_EMPIY); {C

§ '
procedure INSQHI (ITEM : 4a ADDRESS; I

& HEADER : im ADDRESS; Al
[STATUS : out INSQ_STATUS); o,
' ...

procedure RENQHI (HEADER : 4n ADDRESS;

ITEX : out ADDRESS: =

STATUS : oat REMQ_STATUS): "

N

procedure INSQII (ITEN : 4s ADDRESS:
HEADER : 4a ADDRESS;
STATUS : out INSQ_STATUS);

SRR

gt 0" " om

procedure RENGTI (HEADER : in ADDRESS:
ITEN : out ADDRESS;
STATUS : out RENQ_STATUS);

+
.

X

Implementation-Dependent Characteristics 2-7

RIS S

)ﬂﬁ‘:‘l 'J-I. -

" .:

> 5%

P
a

s

P
A

I3

T T T P AT T AT TN T Y o ® kM e A - . . - - - - - e WL L me . e . . . <.
‘l. O ‘(-"' .. l." 1 ‘x’&" -',(\"-(N‘ N -"'l"’-_f-.'f-\,' ~_'.._"'-\,(\ L% -"’»,! \"'._" w’ \'-."'. NE CL P ER NN S CES AT RN A .._";‘
X Lo s o & » R N .. Ui Mo N o N o N o ¥ 2 Nadlat Rl o Ny

b IR VN LN U AN R I P 2 T W S T W W W MU W N MY R R AT AR A U R R X T O A R O R AT T R P e e e Ry

private
=~ Not shown

end SYSTEN: ,

F.4 Restrictions on Representation Clauses

The representation clauses allowed in VAX Ada are length. enumera-
tion, record representation, and address clauses.

In VAX Ada, a representation clause for a generic formal type or a
type that depends on a ; °neric formal type is not allowed. In addition,
a representation clause for a composite type that has a component

or subcomponent of a generic formal type or a type derived from a
generic formal type is not allowed.

F.5 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

VAX Ada does not allocate implementation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address
Clauses
Expressions appearing in address clauses must be of the type
ADDRESS defined in the package SYSTEM (see 13.7a.1 and F.3).
In VAX Ada, values of type SYSTEM.ADDRESS are interpreted as

integers in the range 0.. MAX_INT, and they refer to addresses in the
user half of the VAX address space.

VAX Ada allows address clauses for variables (see 13.3).

VAX Ada does not support interrupts.

2-8 Implementatton-Dependent Charac:eristics

T T A T T T N T e T e T Y T T e 8 e e W A G AR AT A ST -
|~ AT T s VT S N A T P A e W T S T AR SRt N

DL o

oW VIOV U YWD |~;"‘
\/
y
NN
@
Al

Ay A

oo
v
10y
v e

noa 4 8
Ll
b

A A 1 Y
- -

S
-

oy

R R N
l‘ [A ,'_‘
“ S-S N

h 4

A, N Y

r or o>
’
Cuae

»
gl

‘..-..,
2%yt
RSl AT
« £
-

oz

»
R

rend
- e 4
.

-
=

Sy

' 5 %@ 3 o

-\
p ;'.(p)

AR R
...’
AN,

-

R IR T T A - W N P TS T S P WP S 2L T R S TS S S S N N I I e R T e v VU

F.7 Restrictions on Unchecked Type Conversions

VAX Ada supports the generic function UNCHECKED_CONVERSION
with the restrictions given in section 13.10.2.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The VAX Ada predefined packages and their operations are imple-
mented using VAX Record Management Services (RMS) file orga-
nizations and facilities. To give users the maximum benefit of the
underlying VAX RMS input-output facilities, VAX Ada provides pack-
ages in addition to the packages SEQUENTIAL_IO. DIRECT_IO,
TEXT_IO, and IO_EXCEPTIONS, and VAX Ada accepts VAX RMS File
Definition Language (FDL) statements in form strings. The following
sections summarize the implementation-dependent characteristics of
the VAX Ada input-output packages. The VAX Ada Run-Time Reference
Manual discusses these characteristics in more detail.

F.8.1 Additional VAX Ada Input-Output Packages

In addition to the language-defined input-output packages (SEQUENTIAL _
10, DIRECT_IO, and TEXT_IO), VAX Ada provides the following
input-output packages:

* RELATIVE_IO (see 14.2a.3)

*+ INDEXED_IO (see 14.2a.5)

¢+ SEQUENTIAL_MIXED_IO (see 14.2b.4)

¢ DIRECT_MIXED_IO (see 14.2b.6)

¢ RELATIVE_MIXED_IO (see 14.2b.8)

¢ INDEXED_MIXED_IO (see 14.2b.10)

VAX Ada does not provide the package LOW_LEVEL_IO.

Implementation-Depencent Charac:enstics 2-9

T T R T AT T AT AT TR AT A S AR AL A A Ay ~ o fe e P T I T SR
Ay P, YRV _.." ™ O 4 PN T R (.-’-‘I.F_J'J"I'.J'fl_f AT

ALEOE N Nan i A a0 T e

T W o, Y

i A®

SN

POl

»
“y
I 4

w

1";{:('
Kad 2 2l

X

g

R NN O TR AR O O R N R O T A vy wrwuey

F.8.2 Auxillary Input-Output Exceptions

, VAX Ada defines the exceptions needed by the packages RELATIVE_
o 10, INDEXED_IO, RELATIVE_MIXED_IO, and INDEXED_MIXED_IO '
R in the package AUX_IO_EXCEPTIONS (see 14.5a).

F.8.3 Interpretation of the FORM Parameter

The value of the FORM parameter for the OPEN and CREATE proce-

kY dures of each input-output package may be a string whose value is in- '
:: terpreted as a sequence of statements of the VAX Record Management 1
n Services (RMS) File Definition Language (FDL), or it may be a string '
b whose value is interpreted as the name of an external file containing)

FDL statements.

X The use of the FORM parameter is described for each input-output \
“ package in chapter 14. For information on the default FORM param- :

N eters for each VAX Ada input-output package and for information on
fs: using the FORM parameter to specify external file attributes, see the
B VAX Ada Run-Time Reference Manual. For information on FDL, see the

Guide to VAX/VMS File Applications and the VAX/VMS File Definition
Language Facility Reference Manual.

F.8.4 Implementation-Dependent Input-Output Error Conditions

As specified in section 14.4, VAX Ada raises the following language-
. defined exceptions for error conditions occurring during input-output

. operations: STATUS_ERROR, MODE_ERROR, NAME_ERROR, USE_ -
K ERROR, END_ERROR, DATA_ERROR, and LAYOUT_ERROR. In ;

n‘: addition, VAX Ada raises the following exceptions for relative and
0 indexed input-output operations: LOCK_EKROR, EXISTENCE_ERROR,
XN and KEY_ERROR. VAX Ada does not raise the language-defined

exception DEVICE_ERROR; device-related error conditions cause USE_
ERROR to be raised.

The exception USE_ERROR is raised under the following conditions:

W * In all CREATE operations if the mode specified is IN_FILE.

M * In all CREATE operations if the file attributes specified by the
FORM parameter are not supported by the package.

2-10

Implementation-Dependent Characteristics

«

L

vy} W) “» e P PR e D R R D T I e X T) s] -
W N N AT e o M P NPT A A P S SN ARG e e e

LI s R R R R TR AR KA LN RN TV S A I R AR L S A AN N AN W UL 7 YO

e In the WRITE operations on relative or indexed files if the element
in the position indicated has already been written.

* Inthe UPDATE and DELETE_ELEMENT operations on relative or
indéxed files if the element to be updated or deleted is not locked.

e In the UPDATE operations on indexed files if the specified key
violates the external file attributes.

e Inthe SET_LINE_LENGTH and SET_PAGE_LENGTH opera-
tions on text files if the lengths specified are inappropriate for the
external file.

e If the capacity of the external file has been exceeded.

The exception NAME_ERROR is raised as specified in section 14.4:

by a call of a CREATE or OPEN procedure if the string given for the
NAME parameter does not allow the identification of an external file. In
VAX Ada, the value of a NAME parameter can be a string that de-otes
a VAX/VMS file specification or a VAX/VMS logical name (in either
case, the string names an external file). For a CREATE procedure, the
value of a NAME parameter can also be a null string, in which case it
names a temporary external file that is deleted when the main program
exits. The VAX Ada Run-Time Reference Manual explains the naming of
externai fiic, in more detail.

F.9 Other Implementation Characteristics

Implementation characteristics having to do with the definition of a
main program, various numeric ranges, and implementation limits are
summarized in the following sections,

F.9.1 Definition of a Main Program

A library unit can be used as a main program provided it has no
formal parameters and, in the case of a function, if its returned value
is a discrete type. If the main program is a procedure, the status
returned to the VAX/VMS environment upon normal completion of the
procedure is the value one. If the main procedure is a function, the
status returned is the function value. Note that when a main function
returns a discrete value whose size is less than 32 bits. the value is zero
or sign extended as appropriate.

Implementation-Dependent Charactenstics 2-11

LY -
b'n.l'-.\ 'Q. £

L7atoab - ghy

- " m A P PO PP R TR A e L . Ay
o U S R NP i S N TR '-?"».i’o."a AMN AR e Vo R4 0 X X B .!.IL AU N Ly Un'OeN kX .t"‘!'—‘\ A l‘-.'!“;‘u'

) a0y .
' 'z','\z‘)' -"' N® 2%

L)
L) ¥

5‘

PR

KRR AR R AN AR LAY * GAT a7 ka e At 4 ats a¥h a5 '3 'l n ¥ et stk ath s .

F.9.2 Values of Integer Attributes

The ranges of values for integer types declared in the package
STANDARD are as follows:

SHORT_SHORT_INTECER -128 . 127
SHORT_INTEGER -32768 . 32767
INTEGER -2147483648 . 2147483647

For the packages DIRECT_IO, RELATIVE_IO, SEQUENTIAL_MIXED_
10, DIRECT_MIXED_IO, RELATIVE_MIXED_IO, INDEXED_MIXED
10, and TEXT_IO, the ranges of values for types COUNT and
POSITIVE_ COUNT are as follows:

2147483647
2147483647

COUNT 0..
POSITIVE_COUNT 1..
For the package TEXT_IO, the range of values for the type FIELD is as
follows:

FIELD 0 .. 2147483647

F.9.3 Values of Floating Point Attributes

Attribute

F_Floating Value
and Approximate
Decimal Equivalent

DIGITS
MANTISSA
EMAX

EPSILON
approximately

SMALL
approximately

LARCE

approximately

2-12

A N ¢ ; W R NN U LY ST T - Iy T IO K T ™ T
.!"-5"."‘..".\!“‘,‘-‘ ‘-)"J!‘n.».-‘!‘..!ﬁ N ;.!‘g‘. l- A N N |'.‘l.h| \J IR, ’p‘l. l‘.l- \.u‘J ..l..' A X .’ >

6
21
84

16#0.1000_ 000#e-4
9.53674E-07

16#0.8000_000#e-21
2.58494E-26

16#0.FFFF_F8(4e + 21
1.93428E ~ 25

imptementation-Oependent Charac:eristics

S

Qe 0

SR
[

.
NP

-~

LTI

-

n -

o

e

Ay Sy

2

\J

A

Yy

)

il

-

o,

b YA 4

¥

s

£

L

- LW

I 0 R

- -

KRR AL G R ORI X

AR AT RN AN R EARKITRE A

-
£
3
X
-
-
»,
.
J
b
y -
&
2
td
]
J
-3

=y

o
Pl
o g
»
oy
l:|_,
e
(N
F_Floating Value .0:0}
snd Approximate *aY:
Attribute Decimal Equivalent :
SAFE_EMAX 127 ::.
SAFE_SMALL 16#0.1000_000#¢~31 :
approximately 2.93874E-39 b :
SAFE_LARGE 16#0.7FFF_FCO#e + 32 ‘
approximately 1.70141E + 38 "
FIRST -16#40.7FFF_FF8#e+32 "
approximately -1.70141E + 38 o
LAST 16#0.7FFF_FF8#e + 32 o
approximately 1.70141E + 38 'n_lL
MACHINE _RADIX 2 2
MACHINE _MANTISSA 24 ,!Q,
MACHINE_EMAX 127 ;
MACHINE_EMIN -127 by \
MACHINE_RQUNDS True : 5
MACHINE_OVERFLOWS True .
o
.-'{
D_Floating Value !:,ﬂ
and Approximate o
Attribute Decimal Equivalent oy
DICITS 9 '.).
MANTISSA 31) .
EMAX 124 o
EPSILON 16#0.4000_0000_0000_000#e~7 '
approximately 9.3132257461548E -10 - A
"
SMALL 16#0.8000_0000_ 0000_000#e-31 M
approximately 2.3509887016446E -38 ®
LARGE 1640. FFFF_FFFE_0000_0004e + 31 NY
approximately 2.1267647922655E + 37 s
SAFE_EMAX o Z::- ,
SAFE_SMALL 1640 1000_0000_NO00_ (00#e-31 NS
approximately 2.9387358770S57E -39 ®
o
S
oo
Implementation-Dependent Characteristics 2-13 :’

&
"

WS R R . . L "N " LK e X e N P e e \
N D S DD T O X R O X B e e T S D e e e A e S O O O R D O oy el

’-.'l")“n'i.l‘\.;;l.-' N .|'o..‘.0 Y n". l. .

K]

OWUSA NUAE SR AK AR A AN XN

'

'

Y3070, 4°2.65. 8" 0% 1% 4. 4"

D _Floating Value
and Approximate

Attribute , Decimal Equivalent

SAFE_LARGE 1640.7FFF_FFFF_0000_00ie + 32
approximately 1.7014118338124E - 38

FIRST -1640 7FFF_FFFF_FFFF_FF8re+ 32
approximately -1.7014118346U47E + 38

LAST 1640.7FFF_FFFF_FFFF_FF8se+ 32
approximately 1.7014118346047E + 38

MACHINE_RADIX T2

MACHINE_MANTISSA 56

MACHINE_EMAX 127

MACHINE_EMIN -127

MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

G_Floating Value
and Approximate

Attribute Decimal Equivalent

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 1640.4000_0000_0000_00#4e-12
approximately 8.881784197001E-016

SMALL 16#0.8000_0000_0000_004e-51
approximately 1.944692274332E 062

LARGE 16#0.FFFF_FFFF_FFFF_EQ#e+51
approximately 2.571100870814E + 061

SAFE_EMAX 1023

SAFE_SMALL 16#40.1000_0000_0000_00#e~255
approximately 5.562684646268E-309

SAFE_LARGE 16#0.7FFF_FFFF_FFFF_FOre+ 256

approximately

2-14

Ll

WY

8.988465674312E « 307

Implementation-Dependent Characteristics

.'l‘!t x> ..i'..‘l A

4

v '\‘\“.\"-ﬂ’.-\- St

",

>

DAYy

® L%

]
,'l
s S

[
i 4
L

A2

| RS IR
19 ooe e >de

~ ~ry
L

R gl

onEn
Sy

B R

Lt ey
L}

f v N

Pashet)
.

.

o lg gy

'ew."t"" N S RO YO PRI AR AR TSP TN S W NENUNINY A N AR M) P 0 00,0 6,0 el bl OaB af b 0 VAl Vab tah Sad el Val < ab sabo®
G_Floating Value
and Approximate
Attribute . Decimal Equivalent
FIRST -16#0.7FFF_FFFF_FFFF_FCre+ 256
approximately -8.988465674312E + 307
LAST 16#0.7FFF_FFFF_FFFF_FChle+ 256
approximately 8.988465674312E + 307
MACHINE_RADIX 2
MACHINE_MANTISSA 53
MACHINE_EMAX 1023
MACHINE_EMIN -1023
MACHINE_ROUNDS True
MACHINE_OVERFLOWS True
H_Floating Value
and Approximate
Attribute Decimal Equivalent
DIGITS 3
MANTISSA 1
EMAX 444
EPSILON 16#0.4000_0000_0000_0000_0000_0000_ 0000, O#e-27
approximately 7.7037197775489434122239117703397E-0034
SMALL 16#0.8000_ 6000 0000_0000_0000_0000_0000_D#e-111
approximately 1.1006568214637918210934318020936E 0134
LARGE 16#0 FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFE_0Ose-~ 111
approximately ' 3327420268475430059332737993000E + 0133
SAFE_EMAX 16383
SAFE_SMALL 16#0.1000_0000_0000_0000_0000_0000_0000_0se—095
approximately 8.4052578577802337656566945433044E 4933
SAFE_LARCE 16#0.7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_0se - 4096
approximately 5.9486574767861588254287966331400E + 4931
FIRST -16#0.7FFF_FFFr_FFFF_FFFF_FFFF_FFFF_FFFF_Cre~ 0%
approximately -5.9486574767861588254287966331400E ~ 4931
implementation-Dependent Charactenstics 2-15
B A e e e B o e e N e e e e e et

ISR

PN
.

.
oot

Y Y e

o

o
-

-

N OOT S Al
> - 4 i

N N sl ok d
LI @

:}. -

g ale
el

L

P W

TN

R

o

P
PN

L4

FONW) B -
Pt
-, - g -

r
L

SERA NS

H_Flosting Value
and Approximate

Attribute Decimal Equivalent

LAST 16#0.7FFF_FFFF_FFFF_FFFF_FFFF_FFRF_FEFF_Crse~ 309
approximately 5.9486574767861588254287966331400E + 4931

MACHINE_RADIX 2

MACHINE_MANTISSA 113

MACHINE_EMAX 16383

MACHINE_EMIN ~16383

MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

F.9.4 Attributes of Type DURATION

follows:

DURATION' DELTA 1.00000E-04

DURATION' SMALL -1

DURATION' FIRST ~131072.0000

DURATION' LAST 131071.9999 .
DURATION' LARGE 1.3107199993896484375E + 05

The values of the significant attributes of type DURATION are as

F.9.5 Implementation Limits

Limit

Description

32

Maximum number of formal parameters in a subprogram or entry

declaration that are of an unconstrained record type
Maximum identifier length (number of characters)
Maximum number of characters in a source line

Maximum number of discriminants for a record type

2-16 Implementation-Dependent Charactertstics

DRy (Ve v I
“L*’L‘ D g ,'l‘.’et'l P SE M NI

TR AL G A AN A A AR

N SO A
% Al o

=

LY e
' e e

1/‘:'#-';’(;'4':‘.‘;'-" AL

‘u
-
=
.
-
[
L
»
"
2%
v

ey

- \1.‘.1"
-

P2 ket

TR

.
O X A

L 4
riAS

s w
o Wy

TR o A O I
IO A ™

s

® s
LELTS s

?.

Limit Description

246 Maxtmum number of formal parameters In an entry or subprogram
declaration

255 Maximum number of dimensions in an array type

1023 Maximum number of library units and subunits in a compilation
closure!

4095 Maximum number of library units and subunits in an execution
closure? v _

32757 Maximum number of objects declared with PSECT_OBJECT pragmas

65535 Maximum number of enumeration literals In an enumeration type
definition

65535 Maximum number of characters in a value of the predefined type
STRING

65535 Maximum number of frames that an exception can propagate

65535 Maximum number of lines in a source file

21 Maximum number of bits in any object

Ithe compilation closure of a given unit is the total set of units that the given unit

depends on, directly and indirectly.

2The execution closure of a given unit is the compilation closure plus all associated
secondary units (library bodies and subunits).

Implementation-Dependent Charactenstics

3 » P B T I P T T e T TR % “w P e o P
.‘A“.l“..“.l'l.l 2 ": ..l. l’. A l..hl..l.- ’ . "") 'f', ** '.{ = ‘. -.’- o9 "r nS "* ¢ *

2-17

P fln

A

e
RS

Y
e

.
w»

Peladionndled
’ T i

poraionl

-
.-

Ly
?—‘Z .

PR
-

,'{

Ay

1w 77 r.'.r,:‘;nv e o W8 4 _v‘,:Z

ERAALETE LR

S

"y 2
7 s

1..‘: "l

0y

- e g A na -
AN RO R TR R -.l‘-.s,-. e

PR U L N U VU A R AR T AN A U N AN AU A X U N U O Y UNVIWVUC A IR 8 404 bR AL R s A" N Y

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test 1is run. The values used for
this validation are given below.

Name and Meaning Value

$BIG_ID1 119 A’s and a '1l’
Identifier the size of the
maximum input line 1length with
varying last character.

$BIG_ID2 119 A’'s and a '2’
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 119 A’'s and a '3' in the middle
Identifier the size of the
maximum input line 1length with
varying middle character.

$BIG_ID4 119 A’s and a '4’ in the middle
Identifier the size of the
maximum input line length with
varying middle character.

$BIG_INT LIT " 116 0's and 0298
An integer literal of value 298
with enough 1leading zeroes so
that it 1is the size of the
maximum line length.

$BIG_REAL_LIT 115 0's and 690.0
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

Cc-1

LR »

3 & ..‘! A%y, ' '\:‘.. .‘~ ‘ '0 \ .‘0 L M) ‘n

»

v

-

-
s

I*

% %]
R

T e iad

P Y | g
e o d® B

« £ .1 .
h

Oz e

ol
1A

-

- r_a_ e

4

»

A
o

(".",I

..:.

Y Yt s

A AR N]

S

AT P N Y L R N TN U RN AN R LN A X N I PR T XX R PO R R R N K N P E . P x] S aiat AAa fav ga~ e [T T,

D,
o
o
n0
oy,
. Sk
$BIG_STRINGL "60 A’s” o
A string literal which when 3
catenated with BIG_STRING2 »
yields the "image of BIG_ID1. ' '~?
$BIG_STRING2 "59 A’'s followed by 1” oy
A string literal which when ’f
catenated to the end of !
BIG_STRINGl yields the image of »
BIG_ID1. o
A
$BLANKS 100 blanks 1,
A sequence of blanks twenty x‘
characters less than the size ‘%J
of the maximum line length. »
$COUNT_LAST 2147483647 =
A universal integer literal R
whose value is o
TEXT_10.COUNT’LAST.)
o
$FIELD_LAST 2147483647 BT
A universal integer M\
literal whose value is Y
TEXT_IO.FIELD'LAST. %
9
A WY
$FILE_NAME WITH BAD_ CHARS BAD-CHARS"#.%!X »
An external file mname that 3
either contains invalid i
characters or is too long. ﬁ::
o
$FILE_NAME_WITH _WILD CARD CHAR WiLD- CHAR* . NAM e
An external file mname that »
either contains a wild card o
character or is too long. is
$GREATER_THAN_ DURATION 75000.0 ";
A universal real literal that Ny
lies between DURATION'BASE’'LAST »
and DURATION'LAST or any value 3R
in the range of DURATION. ' o
J »
SGREATER_THAN DURATION_ BASE LAST 131073.0 i;
A universal real literal that is o
greater than DURATION'BASE'LAST. »
-
- ~
S$ILLEGAL_EXTERNAL FILE_ NAMEl BAD-CHAR @. ! ~
An external file name which Qf
contains invalid characters. &,
I\ d
»

5

c-2

<

g
b,

¢
v

X _b."|‘.."1.!‘h‘l\‘.|l|..!.‘.~ e ..,“!.‘.'.‘L W .'...‘. '* b TR -!' MO AR ML “(b Wl -.‘I J‘ -(.‘ ; "" :,,‘-‘ r.ﬂ'\ '\1’7-_ T o o 'ﬂ. w7 .-."‘:..

O biw L) ™

TER RN R

R R R AR I LU R AR

[
KD
B O A O DO

KRR XY N

SILLEGAL EXTERNAL_FILE NAME2

An external file name which
is too 1long.
[
$INTEGER_FIRST
A universal integer literal

whose wvalue 1is INTEGER'FIRST.
$INTEGER_IAST
A universal

whose value is

integer literal
INTEGER' LAST.

S$1NTEGER_LAST PLUS_1
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION,

$LESS_THAN DURATION_BASE_FIRST
A universal real literal that is
less than DURATION’BASE'FIRST.

SMAX DIGITS
Maximum digits supported for
floating-point types.
$MAX IN LEN
Maximum input line length

permitted by the implementation.

$MAX INT
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX INT PLUS_1
A universal integer literal
whose value is SYSTEM.MAX_ INT+l. '

$MAX LEN_INT BASED_LITERAL
A universal integer based
literal whose value is 2#11#
with enough 1leading zeroes in
the mantissa to be MAX_ IN_LEN
long.

b

THIS-FILE-WOULD-BE-PERFECTLY -
LEGAL-IF-IT-WERE-NOT-SO-
LONG.SO-THERE

~2147483648

2147483647

2147483648

-75000.0

-131073.0

33

120

2147483647

2147483648

2: followed by 115 0's followed
by 11:

e R e e o G e S e S S

A T TR A At

1
.
-

Rl A
o X

e) [~y a” €.
2 O pexsosss

3

-
-

ooy

2

- J. -
5 ,,-‘-;" 5

Y
b Ay

F L
}}}ﬂﬁﬁ.le

s
-

AT

o
.
.

)
R - iy
Ol .‘0 K . ¥, |'¢

R R AUL LA AL WA S AL WL Lt bl G p ot ey

$MAX LEN REAL BASED LITERAL 16: followed by 113 0's followed
A universal real based literal by F.E:
whose value 1is 16:F.E: with

! enough leadihg =zeroes in the

i mantissa to be MAX_IN LEN long.

SN

.
44

27 @

A,

[

$MAX STRING_LITERAL "118 A's"
A string 1literal of size
MAX IN LEN, including the quote
characters.

Jo’;

e

vy
K

s

»

SMIN_INT -2147483648
A universal integer literal
whose value is SYSTEM.MIN_ INT.

K RN
o e ST]

me

$NAME SHORT_SHORT INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

N

@ B

7/

$NEG_BASED_INT 16#FFFFFFFE#
A based integer literal whose

highest order nonzero bit

falls in the sign bit

position of the representation

for SYSTEM.MAX INT.

& O
5 %
&

,_.

ARl I

]'

»
.
14

e

Y 'vl\ 'I‘ ‘5

(IR
R
.‘:"-’

e

[y

b

h
¥

1
-

r

. ‘u
Pd

£
8

o«

® s
A

.
"- f\ I‘a’ 1,

L o ol i

", f.f'('q. o Tl
A o

e r A e ey . e .. - . e .
e T T T e . A AN TS N T T

Pg

\-'.\,';\' W ““‘-"‘F‘ ‘-r~ .r\ o .'-.‘.- N

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform tc
the Ada Standard. The following 25 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A A basic delcaration (line 36) wrongly follows a later
declaration.

E28005C This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ALMP.

C34004A The expression in line 168 wrongly yield a value outside of the
range of the target type T, raising CONSTRAINT ERROR.

C35502P The equality operators in lines 62 and 69 should be inequality
operators

A35902C Line 17's assignment of the nomimal upper bound of a fixed-
point type to an object of that type raises CONSTRAINT ERROR,
for that value lies outside of the actual range of the type.

C35904A The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINT ERROR, because its upper bound exceeds that of
the type.

C35A03E & R These tests assume that attribute 'MANTISSA returns 0 when
applied t¢ a fixed-point type with a null range, but the
Ada Standard does not support this assumption.

C37213H The subtype declaration of SCONS in line 100 is wrongly expected
to raise an exception when elaborated.

C37213J The aggregate ia line 451 wrongly raises CONSTRAINT_ERROR.

C37215C,E, Various discriminant constraints are wrongly expected to be
G,H incompatible with the type CONS.

C38102C The fixed-point <conversion on line 23 wrongly raises
CONSTRAINT ERROR.

LA (\v-,\- N -‘hr.\l.'-'i At AT AT N R A et
el an Sl o & «

WAL A]

VAW SR AEY

WY LA
> . 5

-
!

Bl

T\]@

'I"I—ﬁ

5 ¥_1
P I S A
s

Tl

RN Y

&

ﬁ
-

£EL

‘@
.n'r‘j v

()
Ps
-

LA X

‘l.)r"l{ r('-;. »

i & |
Py

.

o

l-‘ I.

PN A
L5

8
. s

A AP

[T
- ',
L]

S e
,I.’l
1

i

.
R0l g s
<.,

.. ™ = LN e a - " 2
Ty T T A T A L Y v T P A Ty
A N 3 ; s

ol nd- a Wyl wNn Mv\?

-

C41402A 'STORAGE_SIZE is wrongly applied to an object of an access type.

rd
T T T ¥ [

C45614C REPORT.IDENT_INT has an argument of the wrong type

(LONG_INTEGER). »
1 4 »
A74106C A bound specified in a fixed-point subtype declaration lies
C8501B outside of that calculated for the base type, raising Pt

C87B04B CONSTRAINT_ERROR. Errors of this sort occur re lines 37 &
CCl1311B 59, 142 & 143, 16 & 48, and 252 & 253 of the four tests,
respectively (and possibly elsewhere)

<oy

BC3105A Lines 159..168 are wrongly expected to be incorrect; they are
correct.

AD1AOlA The declaration of subtype INT3 raises CONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

® SN

CE2401H The record aggregates in lines 105 and 117 contain the wrong
values.

P

*
A

CE3208A This test expects that an attempt to open the default output
file (after it was closed) with MODE_IN file raises NAME_ERROR
or USE_ERROR; by commentary AI-00048, MODE_ERROR should be
raised.

.;.y .

. v s
Ayt

L ¢

L

A R
)

P

A
Py

a

R ‘)’i}. Tl

,‘, _
R N
.‘

A A

D-2

y 4}1’151‘1." v .
- - &

N
-\’-‘
~ ~
NG

A N s o o N R i AT AT R AT A e e A AT A LRSI AT AT AV AT RTNT AT AT LRI RPATAE.
» X g 2 I hE R P » ¥ M A Rl AR R A AN L RS A A, L A g, , Sy, Ty !

o o

R L e S N A WA TS e LN L% P 0 0 e oW VA U U (R A L LU W UR AL WY O

= ND

B at o D

e) T
- rESEL

©® "IN
'r.:. - -—

Y x
11'4:

=
=
m
O

)

~
RIS TR
e = - o8

L L/ y ¢
AAAF AR
PR AT e A

f-’n’-

L]
Sy,
;:.T?T'T.' '/'_ L]
s %

)
»
\
X
t
ey,
- - - - o d . - A __. ‘ o i 9

'. ‘\.u

-'VV-“
A, - e
v n - f I
LSS 'u 't
%N:: ',,\";-s."\' n."x\.

v
¥ V}\ A N V‘\ T e A T ",-C’il’-:
. o l}f .r,‘m :\ .r-,' AT
St """‘ wG'r-""- PRI o PRGN gnln

N \ 3
-’.':'.‘-') t‘!‘n' hrnn .n'.':::':'. Wy 'c".‘::.‘ '\'.'t‘ ‘c'.'l"‘ 3 s‘! ¥, «"a:"g"‘n "l e t"'o‘»‘"’ol 95 * ; , L) oy’

